Menu Close

Category: Arithmetic

how-to-find-the-Fourier-series-of-f-x-x-0-lt-x-lt-1-8-

Question Number 77285 by jagoll last updated on 05/Jan/20 $$\mathrm{how}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{Fourier}\:\mathrm{series}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}\:,\:\mathrm{0}\:<\:\mathrm{x}<\frac{\mathrm{1}}{\mathrm{8}} \\ $$ Answered by john santu last updated on 05/Jan/20 $$\mathrm{because}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function}\: \\ $$$$,\:\mathrm{we}\:\mathrm{used}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{series}.…

9-3-6-4-8-

Question Number 11743 by saa last updated on 30/Mar/17 $$\mathrm{9}/\mathrm{3}\left(\mathrm{6}×\mathrm{4}/\mathrm{8}\right)=? \\ $$ Answered by Joel576 last updated on 31/Mar/17 $$\frac{\mathrm{9}}{\mathrm{3}\left(\mathrm{6}\:.\:\frac{\mathrm{1}}{\mathrm{2}}\right)}\:=\:\frac{\mathrm{9}}{\mathrm{3}\:.\:\mathrm{3}}\:=\:\mathrm{1} \\ $$ Terms of Service…

0-16-2-3-of-2-5-1-8-

Question Number 11732 by agni5 last updated on 30/Mar/17 $$\mathrm{0}.\mathrm{16}\:\boldsymbol{\div}\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{of}\:\frac{\mathrm{2}}{\mathrm{5}}\:\boldsymbol{\div}\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$ Answered by ajfour last updated on 30/Mar/17 $$\mathrm{8} \\ $$ Terms of Service…

Question-77132

Question Number 77132 by peter frank last updated on 03/Jan/20 Commented by kaivan.ahmadi last updated on 03/Jan/20 $${z}=\mathrm{4}\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)−\mathrm{4}\left(−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+{i}\frac{\mathrm{1}}{\mathrm{2}}\right)= \\ $$$$\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{6}{i}+\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{2}{i}=\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{4}{i}=\mathrm{4}\left(\sqrt{\mathrm{3}}+{i}\right)=\mathrm{8}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+{i}\frac{\mathrm{1}}{\mathrm{2}}\right)= \\ $$$$\mathrm{8}{e}^{{i}\frac{\pi}{\mathrm{6}}} \\ $$$$\Rightarrow\frac{{z}}{\mathrm{8}}+{i}\left(\frac{{z}}{\mathrm{8}}\right)^{\mathrm{2}} +\left(\frac{{z}}{\mathrm{8}}\right)^{\mathrm{3}}…

Question-77131

Question Number 77131 by peter frank last updated on 03/Jan/20 Answered by mr W last updated on 03/Jan/20 $${perpendicular}\:{tangents}\:{from}\:{P}\left({u},{v}\right): \\ $$$${y}={v}+{m}\left({x}−{u}\right)\:\Rightarrow{mx}−{y}+\left({v}−{mu}\right) \\ $$$${y}={v}−\frac{\mathrm{1}}{{m}}\left({x}−{u}\right)\:\Rightarrow{x}+{my}−\left({mv}+{u}\right) \\ $$$${from}\:{Q}\mathrm{77127}\:{we}\:{have}:…

Find-the-value-of-constant-a-such-that-axe-x-is-a-solution-of-Differential-equation-d-2-y-dx-2-3-dy-dx-2y-2e-x-solve-D-E-for-which-y-1-and-dy-dx-3-when-x-0-

Question Number 77128 by peter frank last updated on 03/Jan/20 $${Find}\:{the}\:{value}\:{of}\:{constant} \\ $$$$“{a}''\:{such}\:{that}\:{axe}^{−{x}\:} {is} \\ $$$${a}\:{solution}\:{of}\:{Differential} \\ $$$${equation} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{3}\frac{{dy}}{{dx}}+\mathrm{2}{y}=\mathrm{2}{e}^{−{x}} \\ $$$${solve}\:{D}.{E}\:{for}\:\:{which} \\…

Prove-that-line-lx-my-n-0-is-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-if-a-2-l-2-b-2-m-2-n-2-

Question Number 77127 by peter frank last updated on 03/Jan/20 $${Prove}\:{that}\:{line}\:{lx}+{my}+{n}=\mathrm{0} \\ $$$${is}\:{tangent}\:{to}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}\:} }=\mathrm{1}\:{if}\:{a}^{\mathrm{2}} {l}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}^{\mathrm{2}} ={n}^{\mathrm{2}} \\ $$…