Menu Close

Category: Arithmetic

3-1-2-3-4-2-3-4-5-3-4-5-2016-2014-2015-2016-

Question Number 10855 by Joel576 last updated on 27/Feb/17 $$\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}\:+\:\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}\:+\:\frac{\mathrm{5}}{\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}\:+\:…\:+\:\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!}\:=\:? \\ $$ Answered by nume1114 last updated on 28/Feb/17 $$\:\:\:\:\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}+\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}+…+\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2014}} {\sum}}\frac{{n}+\mathrm{2}}{{n}!+\left({n}+\mathrm{1}\right)!+\left({n}+\mathrm{2}\right)!} \\…

The-sum-of-the-4-th-and-6-th-terms-of-an-AP-is-42-the-sum-of-the-third-and-9th-terms-of-the-proression-is-52-Find-the-first-term-the-common-difference-and-the-sum-of-the-first-10-terms-of-t

Question Number 10583 by Saham last updated on 19/Feb/17 $$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}\:} \:\mathrm{and}\:\mathrm{6}^{\mathrm{th}\:} \mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{AP}\:\mathrm{is}\:\mathrm{42}.\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{third}\:\mathrm{and}\:\mathrm{9th}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{proression}\:\mathrm{is}\:\mathrm{52}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{term}\:,\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{10}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{progression}. \\ $$ Commented by Saham last updated…

Question-141640

Question Number 141640 by Willson last updated on 21/May/21 Answered by qaz last updated on 22/May/21 $$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{16}^{{k}} \left(\mathrm{8}{k}+{n}\right)} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{16}^{{k}} }\int_{\mathrm{0}}…