Menu Close

Category: Arithmetic

3-1-2-3-4-2-3-4-5-3-4-5-2016-2014-2015-2016-

Question Number 10855 by Joel576 last updated on 27/Feb/17 $$\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}\:+\:\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}\:+\:\frac{\mathrm{5}}{\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}\:+\:…\:+\:\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!}\:=\:? \\ $$ Answered by nume1114 last updated on 28/Feb/17 $$\:\:\:\:\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}+\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}+…+\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2014}} {\sum}}\frac{{n}+\mathrm{2}}{{n}!+\left({n}+\mathrm{1}\right)!+\left({n}+\mathrm{2}\right)!} \\…

The-sum-of-the-4-th-and-6-th-terms-of-an-AP-is-42-the-sum-of-the-third-and-9th-terms-of-the-proression-is-52-Find-the-first-term-the-common-difference-and-the-sum-of-the-first-10-terms-of-t

Question Number 10583 by Saham last updated on 19/Feb/17 $$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}\:} \:\mathrm{and}\:\mathrm{6}^{\mathrm{th}\:} \mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{AP}\:\mathrm{is}\:\mathrm{42}.\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{third}\:\mathrm{and}\:\mathrm{9th}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{proression}\:\mathrm{is}\:\mathrm{52}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{term}\:,\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{10}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{progression}. \\ $$ Commented by Saham last updated…

Question-141640

Question Number 141640 by Willson last updated on 21/May/21 Answered by qaz last updated on 22/May/21 $$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{16}^{{k}} \left(\mathrm{8}{k}+{n}\right)} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{16}^{{k}} }\int_{\mathrm{0}}…

A-sequence-of-numbers-T-1-T-2-T-3-T-n-satisfies-the-relation-T-n-1-n-2-nT-n-2-for-all-integers-n-1-if-T-1-2-find-a-The-values-of-T-2-T-3-T-4-b-An-expression-f

Question Number 10487 by Saham last updated on 13/Feb/17 $$\mathrm{A}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{numbers}\:\mathrm{T}_{\mathrm{1}} ,\mathrm{T}_{\mathrm{2}} ,\mathrm{T}_{\mathrm{3}} ,…….\:\mathrm{T}_{\mathrm{n}\:} \mathrm{satisfies} \\ $$$$\mathrm{the}\:\mathrm{relation}\:\mathrm{T}_{\mathrm{n}\:+\:\mathrm{1}} \:+\:\mathrm{n}^{\mathrm{2}} \:=\:\mathrm{nT}_{\mathrm{n}} \:+\:\mathrm{2}\:\mathrm{for}\:\mathrm{all}\:\mathrm{integers} \\ $$$$\mathrm{n}\geqslant\mathrm{1}.\:\mathrm{if}\:\mathrm{T}_{\mathrm{1}} \:=\:\mathrm{2}.\:\mathrm{find}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:\mathrm{T}_{\mathrm{2}} ,\:\mathrm{T}_{\mathrm{3}}…

An-exponential-sequence-of-positive-terms-and-a-linear-sequence-have-the-same-first-term-the-sum-o-their-first-term-is-3-the-sum-of-their-second-term-is-3-2-and-the-sum-of-their-third-term-is-6-

Question Number 10488 by Saham last updated on 13/Feb/17 $$\mathrm{An}\:\mathrm{exponential}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{terms}\:\mathrm{and}\:\mathrm{a} \\ $$$$\mathrm{linear}\:\mathrm{sequence}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{first}\:\mathrm{term}.\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{o}\:\mathrm{their}\:\mathrm{first}\:\mathrm{term}\:\mathrm{is}\:\mathrm{3},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{second}\:\mathrm{term} \\ $$$$\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{2}},\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{third}\:\mathrm{term}\:\mathrm{is}\:\mathrm{6}.\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{fifth}\:\mathrm{term}. \\ $$ Answered by mrW1 last updated…