Menu Close

Category: Arithmetic

Question-75641

Question Number 75641 by aliesam last updated on 14/Dec/19 Commented by vishalbhardwaj last updated on 15/Dec/19 $$\mathrm{Hypergeometric}\:\mathrm{Function}\::\: \\ $$$$\mathrm{2F1}\:\left({a},{b};{c};{z}\right)\:=\:\mathrm{1}+\frac{{ab}}{\mathrm{1}!\:{c}}\:{z}+\frac{{a}\left({a}+\mathrm{1}\right){b}\left({b}+\mathrm{1}\right)}{\mathrm{2}!\:{c}\left({c}+\mathrm{1}\right)}\:{z}^{\mathrm{2}} +\frac{{a}\left({a}+\mathrm{1}\right)\left({a}+\mathrm{2}\right){b}\left({b}+\mathrm{1}\right)\left({b}+\mathrm{2}\right)}{\mathrm{3}!\:{c}\left({c}+\mathrm{1}\right)\left({c}+\mathrm{2}\right)}\:{z}^{\mathrm{3}} +\:.\:.\:. \\ $$ Answered by…

Question-141104

Question Number 141104 by Opredador last updated on 15/May/21 Answered by hknkrc46 last updated on 15/May/21 $$\left.\begin{matrix}{\sqrt{\mathrm{7}^{\sqrt{\mathrm{63}}} }\:=\:\sqrt{\mathrm{7}^{\mathrm{3}\sqrt{\mathrm{7}}} }\:=\:\mathrm{7}^{\sqrt{\mathrm{7}}} \sqrt{\mathrm{7}^{\sqrt{\mathrm{7}}} }}\\{\mathrm{7}^{\sqrt{\mathrm{7}}} \:=\:\boldsymbol{{u}}}\end{matrix}\right\}\:\frac{\boldsymbol{{u}}\sqrt{\boldsymbol{{u}}}\:−\:\sqrt{\boldsymbol{{u}}}}{\boldsymbol{{u}}\:−\:\mathrm{1}} \\ $$$$=\:\frac{\sqrt{\boldsymbol{{u}}}\left(\boldsymbol{{u}}\:−\:\mathrm{1}\right)}{\boldsymbol{{u}}\:−\:\mathrm{1}}\:=\:\sqrt{\boldsymbol{{u}}}\:=\:\sqrt{\mathrm{7}^{\sqrt{\mathrm{7}}} }…

Question-75440

Question Number 75440 by aliesam last updated on 11/Dec/19 Commented by MJS last updated on 11/Dec/19 $$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{good}\:\mathrm{at}\:\mathrm{this}\:\mathrm{but}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{true} \\ $$$$\mathrm{for}\:\mathrm{any}\:{x}\:\mathrm{at}\:\mathrm{least}\:{x}\geqslant\mathrm{1} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \mathrm{e}^{−\left(\mathrm{2}{k}−\mathrm{1}\right){x}} }{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{e}^{−\mathrm{2}{x}}…

If-p-is-a-point-in-the-base-AB-of-a-triangle-ABC-such-that-AP-PB-P-Q-prove-that-p-q-cot-qcot-A-pcot-B-

Question Number 75421 by peter frank last updated on 10/Dec/19 $${If}\:{p}\:{is}\:{a}\:{point}\:{in}\:{the}\:{base} \\ $$$${AB}\:{of}\:\:{a}\:\:{triangle}\:\:{ABC} \\ $$$${such}\:{that}\:{AP}\:\::{PB}={P}:{Q} \\ $$$${prove}\:{that} \\ $$$$\left({p}+{q}\right)\mathrm{cot}\:\theta={q}\mathrm{cot}\:{A}−{p}\mathrm{cot}\:{B} \\ $$ Commented by som(math1967) last…

Question-9847

Question Number 9847 by 0942679167 last updated on 07/Jan/17 Commented by prakash jain last updated on 08/Jan/17 $$\mathrm{Can}\:\mathrm{u}\:\mathrm{please}\:\mathrm{type}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{image}\:\mathrm{is}\:\mathrm{not}\:\mathrm{readble}. \\ $$$$\mathrm{Or}\:\mathrm{use}\:\mathrm{app}\:\mathrm{like}\:\mathrm{camscanner}\:\mathrm{to} \\ $$$$\mathrm{take}\:\mathrm{the}\:\mathrm{image} \\…

If-T-n-1-1-1-2-T-n-Find-a-formular-for-T-n-in-terms-of-n-and-find-the-sum-of-first-n-terms-

Question Number 75327 by TawaTawa last updated on 09/Dec/19 $$\mathrm{If}\:\:\:\:\:\mathrm{T}_{\mathrm{n}\:+\:\mathrm{1}} \:\:\:=\:\:\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{T}_{\mathrm{n}} \\ $$$$\mathrm{Find}\:\mathrm{a}\:\mathrm{formular}\:\mathrm{for}\:\:\mathrm{T}_{\mathrm{n}} \:\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\:\mathrm{n} \\ $$$$\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{first}\:\mathrm{n}\:\mathrm{terms} \\ $$ Commented by malwaan last updated on 11/Dec/19…