Menu Close

Category: Arithmetic

The-hhpotenuse-of-a-right-angled-triangle-has-its-ends-at-the-points-1-3-and-4-1-Find-an-equation-of-the-legs-perpendicar-sides-of-the-triangle-

Question Number 74948 by vishalbhardwaj last updated on 04/Dec/19 $$\mathrm{The}\:\mathrm{hhpotenuse}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{has}\:\mathrm{its}\:\mathrm{ends}\:\mathrm{at}\:\mathrm{the}\:\mathrm{points}\:\left(\mathrm{1},\mathrm{3}\right)\:\mathrm{and}\:\left(−\mathrm{4},\mathrm{1}\right) \\ $$$$.\:\mathrm{Find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{legs}\:\left(\mathrm{perpendicar}\right. \\ $$$$\left.\:\mathrm{sides}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$ Answered by MJS last updated on 04/Dec/19…

Question-9325

Question Number 9325 by tawakalitu last updated on 30/Nov/16 Answered by RasheedSoomro last updated on 30/Nov/16 $$\left(\mathrm{B}\right)\:\mathrm{12}\: \\ $$$$\mathrm{25}\equiv−\mathrm{1}\left(\mathrm{mod}\:\mathrm{13}\right) \\ $$$$\left(\mathrm{25}\right)^{\mathrm{15}} \equiv\left(−\mathrm{1}\right)^{\mathrm{15}} \left(\mathrm{mod}\:\mathrm{13}\right) \\ $$$$\left(\mathrm{25}\right)^{\mathrm{15}}…

Expand-1-2-3-k-1-n-1-cos-2pi-3-x-2n-2-

Question Number 74622 by Raxreedoroid last updated on 27/Nov/19 $$\mathrm{Expand} \\ $$$$\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\centerdot\left(\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}{x}\right)\right]+\mathrm{2}{n}−\mathrm{2}\right) \\ $$ Commented by Raxreedoroid last updated on 28/Nov/19 $$\mathrm{No}\:\mathrm{its}\:\mathrm{just}\:\mathrm{to}\:\mathrm{clarify}\:\mathrm{whats}\:\mathrm{inside}\:\mathrm{sigma} \\…