Question Number 202183 by MathematicalUser2357 last updated on 22/Dec/23 $$\boldsymbol{{what}}\:\boldsymbol{{is}}\:\sqrt{\mathrm{2}}\:\boldsymbol{{over}}\:\mathrm{2} \\ $$ Commented by mr W last updated on 22/Dec/23 $${are}\:{you}\:{serious}? \\ $$ Answered by…
Question Number 202123 by BaliramKumar last updated on 21/Dec/23 $$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{3}×\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{5}×\mathrm{7}}\:+\:……………\infty\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 21/Dec/23 $${t}_{{n}} =\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:{let}\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}=\frac{{a}}{\mathrm{2}{n}−\mathrm{1}}+\frac{{b}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\:\:\:{a}\left(\mathrm{2}{n}+\mathrm{1}\right)+{b}\left(\mathrm{2}{n}−\mathrm{1}\right)=\mathrm{1}…
Question Number 202086 by necx122 last updated on 20/Dec/23 $${There}\:{are}\:{two}\:{possible}\:{routes}\:{from} \\ $$$${Zindhi}\:{to}\:{Katifa}.\:{One}\:{route}\:{is}\:{through} \\ $$$${Zindhi}/{Chadler}\:{expressway}\:{which}\:{is} \\ $$$$\mathrm{100}{km}\:{and}\:{the}\:{other}\:{is}\:{through}\:{Adfeti}\:{and} \\ $$$${Ngonu}\:{covering}\:{a}\:{distance}\:{of}\:\mathrm{80}{km}.\:{A} \\ $$$${motorist}\:{going}\:{through}\:{the}\:{expressway} \\ $$$${can}\:{travel}\:\mathrm{10}{km}/{h}\:{faster}\:{than}\:{the}\:{one} \\ $$$${going}\:{through}\:{Adfeti}\:{and}\:{Ngonu},\:{and} \\…
Question Number 202079 by necx122 last updated on 19/Dec/23 $${A}\:{man}\:{travelled}\:{from}\:{town}\:{A}\:{to}\:{B},\:{a} \\ $$$${distance}\:{of}\:\mathrm{360}{km}.\:{He}\:{left}\:{A}\:{one}\:{hour} \\ $$$${later}\:{than}\:{he}\:{had}\:{planned}\:{so}\:{he}\:{decided} \\ $$$${to}\:{drive}\:{at}\:\mathrm{5}{km}/{h}\:{faster}\:{than}\:{his} \\ $$$${normal}\:{speed},\:{in}\:{order}\:{to}\:{reach}\:{B}\:{on} \\ $$$${schedule}.\:{If}\:{he}\:{arrived}\:{B}\:{at}\:{exactly}\:{the} \\ $$$${scheduled}\:{time},\:{find}\:{the}\:{normal}\:{speed}. \\ $$ Answered…
Question Number 202058 by BaliramKumar last updated on 19/Dec/23 $$\mathrm{Solve}\:\mathrm{by}\:\mathrm{computer}\:\mathrm{programming} \\ $$$${a},\:{b}\:\&\:{c}\:{are}\:{Prime}\:{numbers}.\:\mathrm{And}\:\mathrm{they} \\ $$$$\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{and}\:\mathrm{d}\:\mathrm{is}\:\mathrm{common}\:\mathrm{difference} \\ $$$$\mathrm{Example}\:\left(\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d}\right)\:=\:\left(\mathrm{3},\:\mathrm{5},\:\mathrm{7},\:\mathrm{2}\right) \\ $$$$\:\mathrm{Just}\:\mathrm{Next}\:\mathrm{Set}\left(\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d}\right)\:=\:? \\ $$ Commented by BaliramKumar last updated…
Question Number 201952 by mathlove last updated on 16/Dec/23 $$\left({gof}\right)_{{x}} =\mathrm{2}{x}−\mathrm{1}\:\: \\ $$$$\left({fog}\right)_{{x}} ^{−\mathrm{1}} =\mathrm{3}{x}+\mathrm{2} \\ $$$$\left({fof}\right)_{\mathrm{3}} =? \\ $$ Answered by cortano12 last updated…
Question Number 201850 by Mingma last updated on 14/Dec/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 201433 by necx122 last updated on 06/Dec/23 $${A}\:{truck},\:{P},\:{travelling}\:{at}\:\mathrm{54}{km}/{h}\:{passes} \\ $$$${a}\:{point}\:{at}\:\mathrm{10}:\mathrm{30}\:{am}\:{while}\:{another}\:{truck}, \\ $$$${Q}\:{travelling}\:{at}\:\mathrm{90}{km}/{h}\:{passes}\:{through} \\ $$$${this}\:{same}\:{point}\:\mathrm{30}\:{minutes}\:{later}.\:{At} \\ $$$${what}\:{time}\:{will}\:{truck}\:{Q}\:{overtake}\:{P}? \\ $$ Answered by Rasheed.Sindhi last updated…
Question Number 201257 by BaliramKumar last updated on 02/Dec/23 $$\mathrm{Biggest}\:\mathrm{prime}\:\mathrm{factor}\:\mathrm{of}\:\left(\mathrm{3}^{\mathrm{14}} \:+\:\mathrm{3}^{\mathrm{13}} \:−\:\mathrm{12}\right)\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 02/Dec/23 $$\mathrm{Biggest}\:\mathrm{prime}\:\mathrm{factor}\:\mathrm{of}\:\left(\mathrm{3}^{\mathrm{14}} \:+\:\mathrm{3}^{\mathrm{13}} \:−\:\mathrm{12}\right)\:=\:? \\…
Question Number 201139 by cherokeesay last updated on 30/Nov/23 Commented by Frix last updated on 30/Nov/23 $${x}\approx\mathrm{6395}.\mathrm{12283}\wedge{y}\approx\mathrm{171}.\mathrm{458282} \\ $$$$\mathrm{Exact}\:\mathrm{solution}: \\ $$$${x}=\mathrm{32}\left(\mathrm{8}\left(\mathrm{5}{r}^{\mathrm{2}} +\mathrm{6}{r}+\mathrm{9}\right)\sqrt{{r}−\mathrm{1}}+\mathrm{16}{r}^{\mathrm{2}} +\mathrm{29}{r}+\mathrm{38}\right) \\ $$$${y}=\mathrm{16}\left(\mathrm{4}\left({r}^{\mathrm{2}}…