Menu Close

Category: Arithmetic

Solve-1-x-2-4-x-x-2-6x-11-2-x-4-x-3-2ax-2-ax-a-2-0-

Question Number 70898 by Henri Boucatchou last updated on 09/Oct/19 $$\boldsymbol{{Solve}}\::\: \\ $$$$\left.\mathrm{1}.\right)\:\:\sqrt{\boldsymbol{{x}}−\mathrm{2}}\:+\:\sqrt{\mathrm{4}−\boldsymbol{{x}}}\:=\:\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{6}\boldsymbol{{x}}+\mathrm{11} \\ $$$$\left.\mathrm{2}.\right)\:\:\boldsymbol{{x}}^{\mathrm{4}} \:+\:\boldsymbol{{x}}^{\mathrm{3}} \:−\:\mathrm{2}\boldsymbol{{ax}}^{\mathrm{2}} \:−\:\boldsymbol{{ax}}\:+\:\boldsymbol{{a}}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$ Answered by MJS…

Please-help-The-stock-of-umar-pharmacy-in-january-was-20240-items-its-stock-decline-by-20-percent-in-may-due-to-increase-sales-What-is-the-amount-of-stock-in-may-

Question Number 5274 by sanusihammed last updated on 03/May/16 $${Please}\:{help}\: \\ $$$$ \\ $$$${The}\:{stock}\:\:{of}\:{umar}\:{pharmacy}\:{in}\:{january}\:{was}\:\mathrm{20240}\:{items}. \\ $$$${its}\:{stock}\:{decline}\:{by}\:\mathrm{20}\:{percent}\:{in}\:{may}\:{due}\:{to}\:{increase}\:{sales}. \\ $$$${What}\:{is}\:{the}\:{amount}\:{of}\:{stock}\:{in}\:{may}\:.\: \\ $$ Commented by Rasheed Soomro last…

1-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-u-v-t-3-u-v-t-2-u-v-2-t-u-v-u-v-t-4-2-u-v-t-2-u-v-

Question Number 70780 by MJS last updated on 08/Oct/19 $$\frac{\mathrm{1}}{{t}+\sqrt{{u}}+\sqrt{{v}}}= \\ $$$$=\frac{\left({t}−\sqrt{{u}}+\sqrt{{v}}\right)\left({t}+\sqrt{{u}}−\sqrt{{v}}\right)\left({t}−\sqrt{{u}}−\sqrt{{v}}\right)}{\left({t}+\sqrt{{u}}+\sqrt{{v}}\right)\left({t}−\sqrt{{u}}+\sqrt{{v}}\right)\left({t}+\sqrt{{u}}−\sqrt{{v}}\right)\left({t}−\sqrt{{u}}−\sqrt{{v}}\right)}= \\ $$$$=\frac{{t}^{\mathrm{3}} −\left(\sqrt{{u}}+\sqrt{{v}}\right){t}^{\mathrm{2}} −\left(\sqrt{{u}}−\sqrt{{v}}\right)^{\mathrm{2}} {t}+\left({u}−{v}\right)\left(\sqrt{{u}}−\sqrt{{v}}\right)}{{t}^{\mathrm{4}} −\mathrm{2}\left({u}+{v}\right){t}^{\mathrm{2}} +\left({u}−{v}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{t}+\sqrt[{\mathrm{3}}]{{u}}+\sqrt[{\mathrm{3}}]{{v}}}= \\…

Find-b-in-terms-of-a-if-a-a-b-a-b-1-a-where-a-and-b-are-whole-numbers-

Question Number 5226 by sanusihammed last updated on 02/May/16 $${Find}\:{b}\:{in}\:{terms}\:{of}\:{a}\:{if}\:\sqrt{{a}\frac{{a}}{{b}}}\:\:\:=\:\:\left(\frac{{a}}{{b}}\right)^{\frac{\mathrm{1}}{{a}}} \:\:\:\:.\:\:{where}\:{a}\:{and}\:{b}\:{are} \\ $$$${whole}\:{numbers}.\:\: \\ $$ Commented by prakash jain last updated on 02/May/16 $$\left(\frac{{ab}+{a}}{{b}}\right)^{\mathrm{1}/\mathrm{2}} =\left(\frac{{a}}{{b}}\right)^{\mathrm{1}/{a}}…

Question-70757

Question Number 70757 by MJS last updated on 08/Oct/19 $$. \\ $$ Commented by TawaTawa last updated on 07/Oct/19 $$\mathrm{Sir},\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{the}\:\mathrm{question}\:\mathrm{number}\:\mathrm{of}\:\mathrm{a}\:\mathrm{question}\:\mathrm{you}\:\mathrm{solved} \\ $$$$\mathrm{sometimes}. \\ $$$$ \\…

Question-70503

Question Number 70503 by peter frank last updated on 04/Oct/19 Commented by Prithwish sen last updated on 06/Oct/19 $$\mathrm{Let}\:\mathrm{O}=\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{1}} \right) \\ $$$$\because\:\mathrm{It}\:\mathrm{is}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle}\: \\ $$$$\therefore\boldsymbol{\mathrm{x}}_{\mathrm{1}}…

Question-136043

Question Number 136043 by JulioCesar last updated on 18/Mar/21 Answered by rs4089 last updated on 18/Mar/21 $$\int{sec}^{\mathrm{8}} {x}.{dx} \\ $$$$\int\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\mathrm{3}} {sec}^{\mathrm{2}} {x}.{dx} \\ $$$${tanx}={t}\:\Rightarrow{sec}^{\mathrm{2}}…

If-p-is-a-prime-number-greater-than-5-the-prove-that-p-mod-6-1-or-p-mod-6-5-i-e-All-prime-numbers-greater-than-5-leave-a-remainder-of-1-or-5-when-divided-by-6-

Question Number 4942 by prakash jain last updated on 24/Mar/16 $$\mathrm{If}\:{p}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{5},\:\mathrm{the}\:\mathrm{prove} \\ $$$$\mathrm{that}\:{p}\:\mathrm{mod}\:\mathrm{6}\:\equiv\mathrm{1}\:\mathrm{or}\:{p}\:\mathrm{mod}\:\mathrm{6}\equiv\mathrm{5}. \\ $$$$\mathrm{i}.\mathrm{e}.\:\mathrm{All}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{5}\:\mathrm{leave}\:\mathrm{a} \\ $$$$\mathrm{remainder}\:\mathrm{of}\:\mathrm{1}\:\mathrm{or}\:\mathrm{5}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{6}. \\ $$ Commented by Yozzii last updated on…