Menu Close

Category: Arithmetic

x-and-n-are-integers-p-is-a-prime-number-find-x-p-n-so-that-x-2020-3-p-n-

Question Number 135537 by metamorfose last updated on 13/Mar/21 $${x}\:{and}\:{n}\:{are}\:{integers} \\ $$$${p}\:{is}\:{a}\:{prime}\:{number} \\ $$$${find}\:\left({x},{p},{n}\right)\:{so}\:{that}\::\:{x}^{\mathrm{2020}} +\mathrm{3}={p}^{{n}} \\ $$ Answered by Olaf last updated on 14/Mar/21 $$\mathrm{If}\:{x}\:=\:\mathrm{0},\:{p}\:=\:\mathrm{3}\:\mathrm{and}\:{n}\:=\:\mathrm{1}…

S-x-1-x-1-x-2-x-2-2-x-3-x-3-3-x-4-x-4-4-S-i-1-x-i-x-i-1-i-i-Does-S-limit-to-a-value-for-x-

Question Number 4454 by FilupSmith last updated on 29/Jan/16 $${S}=\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}+\frac{{x}−\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{2}}+\frac{{x}−\mathrm{3}}{{x}^{\mathrm{3}} +\mathrm{3}}+\frac{{x}−\mathrm{4}}{{x}^{\mathrm{4}} −\mathrm{4}}+… \\ $$$$ \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}−{i}}{{x}^{{i}} −\left(−\mathrm{1}\right)^{{i}} {i}} \\ $$$${D}\mathrm{oes}\:\mathrm{S}\:{limit}\:{t}\mathrm{o}\:\mathrm{a}\:\mathrm{value}\:\mathrm{for}\:\pm{x}? \\ $$…

Is-the-following-correct-S-i-1-2-i-1-S-1-2-4-8-16-32-64-128-2S-2-4-8-6-32-2S-S-1-S-1-

Question Number 4365 by Filup last updated on 13/Jan/16 $$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{correct}? \\ $$$$ \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}−\mathrm{1}} \\ $$$${S}=\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+\mathrm{32}+\mathrm{64}+\mathrm{128}+… \\ $$$$\therefore\mathrm{2}{S}=\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{6}+\mathrm{32}+… \\ $$$$\mathrm{2}{S}={S}−\mathrm{1} \\ $$$${S}=−\mathrm{1} \\…

S-1-2-3-4-S-

Question Number 4285 by Filup last updated on 07/Jan/16 $${S}=\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+…}}} \\ $$$${S}=??? \\ $$ Commented by RasheedSindhi last updated on 07/Jan/16 $$\mathrm{S}=\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+…}}} \\ $$$${S}\left({n}\right)=\sqrt{\left({n}+\mathrm{1}\right)+{S}\left({n}+\mathrm{1}\right)} \\…

For-S-1-1-2-1-3-1-n-S-H-n-Harmonic-sequence-H-n-i-1-n-1-i-Can-you-solve-the-partial-sum-

Question Number 3929 by Filup last updated on 25/Dec/15 $$\mathrm{For}: \\ $$$${S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}} \\ $$$${S}={H}_{{n}} \:\:\:\:{Harmonic}\:{sequence} \\ $$$${H}_{{n}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}} \\ $$$${Can}\:{you}\:{solve}\:{the}\:{partial}\:{sum}? \\ $$ Commented…

Question-69393

Question Number 69393 by 06 last updated on 23/Sep/19 Commented by Prithwish sen last updated on 23/Sep/19 $$\left(\mathrm{3}^{\mathrm{t}} +\mathrm{3}^{−\mathrm{t}} \right)^{\mathrm{3}} =\:\mathrm{5}^{\mathrm{3}} \Rightarrow\mathrm{27}^{\mathrm{t}} +\mathrm{27}^{−\mathrm{t}} +\mathrm{3}.\mathrm{3}^{\mathrm{t}} .\mathrm{3}^{−\mathrm{t}}…