Menu Close

Category: Arithmetic

1-If-A-and-B-are-sets-define-their-scheffer-product-A-B-by-A-B-A-B-Prove-by-definitions-that-A-B-A-B-A-B-2-State-the-strong-principle-of-mathematical-induction-Suppose-that-a-1-1-a-2-3-a

Question Number 135889 by Ar Brandon last updated on 16/Mar/21 1IfAandBaresetsdefinetheirschefferproductABbyAB=ABProvebydefinitionsthat(AB)(AB)=AB2Statethestrongprincipleofmathematicalinduction.Supposethata1=1,a2=3$$\mathrm{a}_{\mathrm{k}} =\mathrm{a}_{\mathrm{k}−\mathrm{2}} +\mathrm{2a}_{\mathrm{k}−\mathrm{1}}…

If-a-1-a-2-a-n-be-an-arithmetic-progression-then-show-that-1-a-1-a-n-1-a-2-a-n-1-1-a-3-a-n-2-1-a-n-a-1-2-a-1-a-n-1-a-1-1-a-2-

Question Number 4704 by lakshaysethi039 last updated on 25/Feb/16 Ifa1,a2,anbeanarithmeticprogression,thenshowthat$$\frac{\mathrm{1}}{{a}_{\mathrm{1}} {a}_{{n}} }\:+\:\frac{\mathrm{1}}{{a}_{\mathrm{2}} {a}_{{n}−\mathrm{1}} }\:+\:\frac{\mathrm{1}}{{a}_{\mathrm{3}} {a}_{{n}−\mathrm{2}} }\:+………….+\frac{\mathrm{1}}{{a}_{{n}} {a}_{\mathrm{1}} }\:…