Menu Close

Category: Arithmetic

For-S-1-1-2-1-3-1-n-S-H-n-Harmonic-sequence-H-n-i-1-n-1-i-Can-you-solve-the-partial-sum-

Question Number 3929 by Filup last updated on 25/Dec/15 $$\mathrm{For}: \\ $$$${S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}} \\ $$$${S}={H}_{{n}} \:\:\:\:{Harmonic}\:{sequence} \\ $$$${H}_{{n}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}} \\ $$$${Can}\:{you}\:{solve}\:{the}\:{partial}\:{sum}? \\ $$ Commented…

Question-69393

Question Number 69393 by 06 last updated on 23/Sep/19 Commented by Prithwish sen last updated on 23/Sep/19 $$\left(\mathrm{3}^{\mathrm{t}} +\mathrm{3}^{−\mathrm{t}} \right)^{\mathrm{3}} =\:\mathrm{5}^{\mathrm{3}} \Rightarrow\mathrm{27}^{\mathrm{t}} +\mathrm{27}^{−\mathrm{t}} +\mathrm{3}.\mathrm{3}^{\mathrm{t}} .\mathrm{3}^{−\mathrm{t}}…

prove-or-disprove-i-1-n-p-1-i-p-2-p-1-p-2-P-1-2-np-1-n-1-p-2-1-2-n-n-1-p-2-p-1-n-2-n-2-p-1-p-2-p-i-a-1-a-2-a-n-a-i-1-2-p-1-Z-p-1-0-n-Z-n-2-n-k-0-k-2-p-

Question Number 3794 by Filup last updated on 21/Dec/15 $$\mathrm{prove}\:\mathrm{or}\:\mathrm{disprove}:\:\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{p}_{\mathrm{1}} {i}={p}_{\mathrm{2}} \\ $$$${p}_{\mathrm{1}} ,{p}_{\mathrm{2}} \in\mathbb{P} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{np}_{\mathrm{1}} \left({n}+\mathrm{1}\right)={p}_{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right)=\frac{{p}_{\mathrm{2}} }{{p}_{\mathrm{1}}…

if-two-finite-sets-have-m-and-n-term-if-the-no-of-subset-of-first-set-is-112-more-then-the-no-of-subset-of-second-set-find-m-and-n-

Question Number 69175 by Aditya789 last updated on 21/Sep/19 $${if}\:{two}\:{finite}\:{sets}\:{have}\:{m}\:{and}\:{n}\:{term}.{if}\:{the}\:{no}\:{of}\:{subset}\:{of}\:{first}\:{set}\:{is}\:\mathrm{112}\:{more}\:{then}\:{the}\:{no}\:{of}\:{subset}\:{of}\:{second}\:{set}.{find}\:{m}\:{and}\:{n}? \\ $$ Answered by Rasheed.Sindhi last updated on 21/Sep/19 $$\mid\mathrm{A}\mid={m}\:,\:\mid\mathrm{B}\mid={n} \\ $$$$\mathrm{P}\left(\mathrm{A}\right)=\mathrm{2}^{{m}} \:,\:\mathrm{P}\left(\mathrm{B}\right)=\mathrm{2}^{{n}} \\ $$$$\mathrm{P}\left(\mathrm{A}\right)−\mathrm{P}\left(\mathrm{B}\right)=\mathrm{2}^{{m}}…

if-the-fibonacci-sequence-is-1-1-2-3-5-8-13-21-34-where-it-is-1-1-2-2-3-5-3-5-8-how-can-we-represent-this-sequence-in-summitation-notation-or-product-notation-

Question Number 3628 by madscientist last updated on 16/Dec/15 $${if}\:{the}\:{fibonacci}\:{sequence}\:{is}\: \\ $$$$\mathrm{1},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{8},\mathrm{13},\mathrm{21},\mathrm{34}… \\ $$$${where}\:{it}\:{is}\:\mathrm{1}+\mathrm{1}=\mathrm{2},\:\mathrm{2}+\mathrm{3}=\mathrm{5},\:\mathrm{3}+\mathrm{5}=\mathrm{8},… \\ $$$${how}\:{can}\:{we}\:{represent}\:{this}\:{sequence}\: \\ $$$${in}\:{summitation}\:{notation}\:\Sigma \\ $$$${or}\:{product}\:{notation}\:\Pi? \\ $$ Commented by 123456…

x-1-x-2-2-2x-2-1-find-solution-

Question Number 134670 by benjo_mathlover last updated on 06/Mar/21 $$\mid\:\mathrm{x}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\mid\:=\:\sqrt{\mathrm{2}}\:\left(\mathrm{2x}^{\mathrm{2}} −\mathrm{1}\:\right) \\ $$$$\mathrm{find}\:\mathrm{solution} \\ $$ Answered by EDWIN88 last updated on 06/Mar/21 $$\left(\mathrm{1}\right)\:\mathrm{1}−\mathrm{x}^{\mathrm{2}} \:\geqslant\:\mathrm{0}\:\Rightarrow\:−\mathrm{1}\leqslant\mathrm{x}\leqslant\mathrm{1}…

Question-69111

Question Number 69111 by Fawole last updated on 20/Sep/19 Commented by Rasheed.Sindhi last updated on 20/Sep/19 $$\left(\mathrm{2},\mathrm{11}\right),\left(\mathrm{11},\mathrm{2}\right),\left(\mathrm{5},\mathrm{10}\right)\:\&\:\left(\mathrm{10},\mathrm{5}\right). \\ $$ Commented by Fawole last updated on…

A-man-wants-to-shear-17-cars-between-his-3-children-in-the-ratio-1-2-1-3-1-9-respectively-How-will-he-go-about-it-

Question Number 69073 by necxxx last updated on 19/Sep/19 $${A}\:{man}\:{wants}\:{to}\:{shear}\:\mathrm{17}\:{cars}\:{between} \\ $$$${his}\:\mathrm{3}\:{children}\:{in}\:{the}\:{ratio}\:\mathrm{1}:\mathrm{2},\:\mathrm{1}:\mathrm{3},\:\mathrm{1}:\mathrm{9} \\ $$$${respectively}.{How}\:{will}\:{he}\:{go}\:{about}\:{it}? \\ $$ Commented by necxxx last updated on 19/Sep/19 $${please}\:{help} \\…