Question Number 68272 by peter frank last updated on 08/Sep/19 Answered by Kunal12588 last updated on 08/Sep/19 $${H}_{{max}} ={maximum}\:{height} \\ $$$${R}={horizontal}\:{range} \\ $$$${H}_{{max}} ={h}=\frac{{u}_{{y}} ^{\mathrm{2}}…
Question Number 2702 by Filup last updated on 25/Nov/15 $$\zeta\left({s}\right)=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{i}^{−{s}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+… \\ $$$$ \\ $$$$\mathrm{Is}\:\zeta\left({s}\right)>\mathrm{0}\forall{s}\in\mathbb{R}? \\ $$$$\mathrm{1}.\:\mathrm{Can}\:\mathrm{you}\:\mathrm{prove},\:\mathrm{or}\:\mathrm{prove}\:\mathrm{otherwise}? \\ $$$$\mathrm{2}.\:\mathrm{If}\:\zeta\left({s}\right)>{n},\:{s}\in\mathbb{R},\:\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{bounds} \\ $$$$\mathrm{of}\:{s}?\:\mathrm{i}.\mathrm{e}.\:\:{a}\leqslant{s}\leqslant{b}\::\:\zeta\left({s}\right)>{n}…
Question Number 133764 by liberty last updated on 24/Feb/21 Answered by EDWIN88 last updated on 24/Feb/21 $$\:\mathrm{let}\:\mathrm{x}\:\mathrm{be}\:\mathrm{a}\:\mathrm{page}\:\mathrm{number}\:\mathrm{was}\:\mathrm{counted}\:\mathrm{twice} \\ $$$$\mathrm{Assuming}\:\mathrm{the}\:\mathrm{pages}\:\mathrm{start}\:\mathrm{counting}\:\mathrm{at}\:\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{count}\:\mathrm{continously}\:\mathrm{up}\:\mathrm{we}\:\mathrm{use}\:\mathrm{formula} \\ $$$$\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{n}\right)+\mathrm{x}\:=\:\mathrm{1999}\: \\ $$$$\Rightarrow\mathrm{x}\:+\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\:=\:\mathrm{1999}\:;\:\mathrm{since}\:\mathrm{x}\:\mathrm{is}\:\mathrm{positive}\:…
Question Number 68212 by peter frank last updated on 07/Sep/19 Answered by $@ty@m123 last updated on 07/Sep/19 $${Let}\:{required}\:{equation}\:{of}\:{line}: \\ $$$${y}={m}_{\mathrm{1}} {x}+{c}\:\:\:…..\left(\mathrm{1}\right) \\ $$$${Given}\:{line}:\:\mathrm{4}{x}+\mathrm{3}{y}=\mathrm{21} \\ $$$${Its}\:{slope}:\:{m}_{\mathrm{2}}…
Question Number 68210 by peter frank last updated on 07/Sep/19 Answered by $@ty@m123 last updated on 08/Sep/19 $${Let}\:\frac{\mathrm{sin}\:{A}}{{a}}=\frac{\mathrm{sin}\:{B}}{{b}}=\frac{\mathrm{sin}\:{C}}{{c}}={R} \\ $$$$\Rightarrow\mathrm{sin}\:{A}={aR},\:\mathrm{sin}\:{B}={bR},\:\mathrm{sin}\:{C}={cR}\:…\left(\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{sin}\:\left({A}−{B}\right)\mathrm{sin}\:{C}}{\mathrm{1}+\mathrm{cos}\:\left({A}−{B}\right)\mathrm{cos}\:{C}} \\ $$$$=\:\frac{\mathrm{sin}\:\left({A}−{B}\right)\mathrm{sin}\:\left({A}+{B}\right)}{\mathrm{1}−\mathrm{cos}\:\left({A}−{B}\right)\mathrm{cos}\:\left({A}+{B}\right)} \\…
Question Number 68209 by peter frank last updated on 07/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68203 by peter frank last updated on 07/Sep/19 Commented by Cmr 237 last updated on 07/Sep/19 $$\eth\mathrm{f}=\frac{\eth\mathrm{f}}{\eth\mathrm{x}}+\frac{\eth\mathrm{f}}{\eth\mathrm{y}}+\frac{\eth\mathrm{f}}{\eth\mathrm{z}} \\ $$$$\:\:\:\:=\mathrm{2xy}+\mathrm{cosh}\left(\mathrm{yz}\right)+\mathrm{x}^{\mathrm{2}} +\mathrm{xzsinh}\left(\mathrm{yz}\right)+\mathrm{xysinh}\left(\mathrm{yz}\right) \\ $$ Commented…
Question Number 68191 by peter frank last updated on 06/Sep/19 Answered by mind is power last updated on 06/Sep/19 $${sin}\left({a}−{b}\right)={sin}\left({a}\right){cos}\left({b}\right)−{cos}\left({a}\right){sin}\left({b}\right) \\ $$$$\frac{{sin}\left({a}−{b}\right)}{{cos}\left({a}\right){cos}\left({b}\right)}={tg}\left({a}\right)−{tg}\left({b}\right) \\ $$$$\Rightarrow\frac{{sin}\left({a}−{b}\right)}{{cos}\left({a}\right){cos}\left({b}\right)}={tg}\left({b}\right)\left({k}−\mathrm{1}\right) \\…
Question Number 68189 by peter frank last updated on 06/Sep/19 Commented by peter frank last updated on 06/Sep/19 $${Qn}\:\mathrm{9},\:\:\mathrm{10} \\ $$ Commented by mind is…
Question Number 2589 by Filup last updated on 23/Nov/15 $${f}_{{n}} =\frac{\mathrm{1}}{{n}}\left({n}+{f}_{{n}−\mathrm{1}} \right) \\ $$$${f}_{\mathrm{1}} =\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Evaluate}: \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{f}_{{i}} \\ $$…