Question Number 1112 by malwaan last updated on 14/Jun/15 $${compare}\:\frac{\mathrm{1}}{{log}_{\mathrm{2}} \pi}\:+\:\frac{\mathrm{1}}{{log}_{\mathrm{5}} \pi}\:{and}\:\mathrm{2} \\ $$ Answered by prakash jain last updated on 15/Jun/15 $$\mathrm{log}_{\pi} \mathrm{2}+\mathrm{log}_{\pi} \mathrm{5}=\mathrm{log}_{\pi}…
Question Number 1100 by malwaan last updated on 13/Jun/15 $${compare}\:{log}_{\mathrm{2}} \mathrm{3}\:{and}\:{log}_{\mathrm{3}} \mathrm{5} \\ $$ Answered by 123456 last updated on 13/Jun/15 $$\mathrm{log}_{\mathrm{2}} \mathrm{3}={x}\Leftrightarrow\mathrm{2}^{{x}} =\mathrm{3}\: \\…
Question Number 1083 by Vishal last updated on 08/Jun/15 $${Let}\:{a},{b},{c},{p}\:{be}\:{rational}\:{numbers}\:{such}\:{that}\:{p}\:{is}\:{not}\:{a}\:{perfect}\:{cube}. \\ $$$${If}\:{a}+{bp}^{\frac{\mathrm{1}}{\mathrm{3}}} +{cp}^{\frac{\mathrm{2}}{\mathrm{3}}} =\mathrm{0},\:{then}\:{prove}\:{that}\:{a}={b}={c}=\mathrm{0}. \\ $$ Answered by prakash jain last updated on 08/Jun/15 $${p}^{\mathrm{1}/\mathrm{3}}…
Question Number 1077 by Vishal last updated on 07/Jun/15 $${Find}\:{the}\:{smallest}\:{number}\:{which}\:{leaves}\:{remainders}\:\mathrm{8}\:{and}\:\mathrm{12}\: \\ $$$${when}\:{divided}\:{by}\:\mathrm{28}\:{and}\:\mathrm{32}\:{respectively}. \\ $$ Commented by prakash jain last updated on 07/Jun/15 $$\mathrm{I}\:\mathrm{assume}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{smallest}\:+\mathrm{ve}\:\mathrm{integer}. \\ $$…
Question Number 1063 by lops55 last updated on 26/May/15 $${rational}\:{number}\:{which}\:{is}\:{neither}\:{negetive}\:{nor}\:{positive} \\ $$ Answered by 123456 last updated on 01/Jun/15 $$\mathrm{0}? \\ $$ Terms of Service…
Question Number 1031 by slezthacute@Yahoo.co.id last updated on 21/May/15 $$\mathrm{8}\sqrt{\mathrm{2}} \\ $$ Answered by 123456 last updated on 21/May/15 $$\mathrm{1}<\mathrm{2}<\mathrm{4} \\ $$$$\mathrm{1}<\sqrt{\mathrm{2}}<\mathrm{2} \\ $$$$\mathrm{8}<\mathrm{8}\sqrt{\mathrm{2}}<\mathrm{16} \\…
Question Number 131925 by mathlove last updated on 09/Feb/21 Commented by kaivan.ahmadi last updated on 09/Feb/21 $$\mathrm{2}{x}^{\mathrm{3}} +\mathrm{24}={A} \\ $$$${x}^{\mathrm{3}} >\mathrm{24}\Rightarrow{min}\left({x}^{\mathrm{3}} \right)=\mathrm{25} \\ $$$$\Rightarrow{min}\left({A}\right)=\mathrm{2}\left(\mathrm{25}\right)+\mathrm{24}=\mathrm{74} \\…
Question Number 131910 by mathlove last updated on 09/Feb/21 $${A}\:{devided}\:\:\left({x}^{\mathrm{3}} \right)\:\:\:\:{is}\:\:\mathrm{2}\:\:\:\:\:{Reminder}\:{is}\:\:\mathrm{24} \\ $$$${find}\:\:\:{min}\left({A}\right)=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66287 by Tony Lin last updated on 12/Aug/19 $$\mathrm{10}^{\mathrm{10}^{\mathrm{10}^{.\centerdot^{.\mathrm{10}} } } } =?\: \\ $$ Answered by MJS last updated on 12/Aug/19 $$+\infty…
Question Number 66185 by Tony Lin last updated on 10/Aug/19 $$\left({e}^{\frac{\mathrm{1}}{{e}}} \right)^{\left({e}^{\frac{\mathrm{1}}{{e}}} \right)^{.\centerdot^{.\left({e}^{\frac{\mathrm{1}}{{e}}} \right)} } } =? \\ $$ Commented by GordonYeeman last updated on…