Question Number 582 by ssahoo last updated on 31/Jan/15 $$\mathrm{Show}\:\mathrm{that} \\ $$$$\sqrt{\mathrm{5}+\sqrt{\mathrm{21}}}\:+\sqrt{\mathrm{8}+\sqrt{\mathrm{55}}}\:=\sqrt{\mathrm{7}+\sqrt{\mathrm{33}}}\:+\sqrt{\mathrm{6}+\sqrt{\mathrm{35}}} \\ $$ Commented by prakash jain last updated on 31/Jan/15 $$\sqrt{\mathrm{5}+\sqrt{\mathrm{21}}}={a}+{b} \\ $$$${a}^{\mathrm{2}}…
Question Number 66036 by aliesam last updated on 08/Aug/19 Answered by mr W last updated on 08/Aug/19 $$=\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\frac{{n}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}×\frac{\left(\mathrm{1}+\frac{{n}}{\mathrm{2}}\right)\frac{{n}}{\mathrm{2}}}{\mathrm{2}} \\ $$$$=\frac{{n}\left({n}+\mathrm{2}\right)}{\mathrm{4}} \\ $$ Terms…
Question Number 131525 by mathlove last updated on 05/Feb/21 $$\:{if}\:\:\:\left({a}−{b}\right)\left({a}+{b}\right)=\mathrm{23} \\ $$$${then}\:\:{faind}\:\:\:{a}\centerdot{b}=? \\ $$ Answered by mr W last updated on 05/Feb/21 $${no}\:{unique}\:{solution}\:{for}\:{a},{b}\in{R}. \\ $$$${for}\:{a},{b}\in{Z}:…