Question Number 199405 by mnjuly1970 last updated on 03/Nov/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}\:… \\ $$$$\:\:\mathrm{Q}:\:\:\:\:\:\:\mathrm{I}{f}\:\:,\:\:\:{f}\left({x}\right)\:=\mathrm{2}\:{e}^{{x}} \:−\mathrm{1}\:+\:\lfloor{e}^{{x}} +\:\frac{\mathrm{3}}{\mathrm{2}}\:+\lfloor{e}^{{x}} \rfloor\:\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{f}\:^{−\mathrm{1}} \:\left(\:\frac{\pi}{\mathrm{4}}\:\right)\:=? \\ $$$$\:\:\:\:\: \\ $$ Answered…
Question Number 199399 by Calculusboy last updated on 03/Nov/23 $$\boldsymbol{{Solve}}:\:\boldsymbol{{log}}_{\mathrm{2}} \boldsymbol{{r}}+\boldsymbol{{log}}_{\mathrm{3}} \boldsymbol{{p}}=\mathrm{3} \\ $$$$\boldsymbol{{p}}+\boldsymbol{{r}}=\mathrm{11}\:\:\:\boldsymbol{{fund}}\:\boldsymbol{{p}}\:\boldsymbol{{and}}\:\boldsymbol{{r}}. \\ $$ Answered by mr W last updated on 03/Nov/23 $${one}\:{solution}\:\left({p}=\mathrm{9},\:{r}=\mathrm{2}\right)\:{can}\:{be}\:“{seen}'',…
Question Number 198949 by ArifinTanjung last updated on 26/Oct/23 $$\:\:\frac{\mathrm{5}!×\mathrm{4}!}{\mathrm{3}!×\mathrm{2}!}\:=\:….\:\: \\ $$ Answered by Rasheed.Sindhi last updated on 26/Oct/23 $$\:\:\frac{\mathrm{5}!×\mathrm{4}!}{\mathrm{3}!×\mathrm{2}!}\:=\:\frac{\mathrm{5}!×\cancel{\overset{\mathrm{2}} {\mathrm{4}}}×\cancel{\mathrm{3}!}}{\cancel{\mathrm{3}!}×\cancel{\underset{\mathrm{1}} {\mathrm{2}}}×\mathrm{1}}=\mathrm{2}×\mathrm{5}! \\ $$$$ \\…
Question Number 198950 by ArifinTanjung last updated on 26/Oct/23 $$\mathrm{3x}+\mathrm{2y}=\mathrm{6} \\ $$$$\mathrm{2x}+\mathrm{3y}=\mathrm{6}\:\rightarrow\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:=…? \\ $$ Answered by Rasheed.Sindhi last updated on 26/Oct/23 $$\begin{cases}{\mathrm{3x}+\mathrm{2y}=\mathrm{6}}\\{\mathrm{2x}+\mathrm{3y}=\mathrm{6}}\end{cases}\:\:\:\:\:\:\:\:\:\mathrm{x},\mathrm{y}=? \\ $$$$\mathrm{Adding}:\:\:\mathrm{5}\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{12}\Rightarrow\mathrm{x}+\mathrm{y}=\frac{\mathrm{12}}{\mathrm{5}} \\…
Question Number 198753 by hidaoui1960 last updated on 24/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 198563 by mr W last updated on 22/Oct/23 $${find}\:{all}\:{numbers}\:\left({with}\:{any}\:{number}\right. \\ $$$$\left.{of}\:{digits}\right)\:{satisfying} \\ $$$$\left(\underline{{abcd}…{xyz}}\right)×\mathrm{2}=\left(\underline{{zyx}…{dcba}}\right) \\ $$ Answered by AST last updated on 25/Oct/23 $$\mathrm{2}{z}\equiv{a}\left({mod}\:\mathrm{10}\right);{a}\leqslant\mathrm{4}\Rightarrow{a}\in\left\{\mathrm{0},\mathrm{2},\mathrm{4}\right\};{a}\geqslant{z}…
Question Number 198511 by Hridiana last updated on 21/Oct/23 $$\mathrm{3}+{xy}\sqrt{\frac{{z}}{{xy}}} \\ $$$${xz}+{zx} \\ $$$${how}\:{to}\:{solve} \\ $$$$\mathrm{3}+\pi\left\{\frac{{x}}{\mathrm{2}}>\mathrm{0}\right\}=\left\{\frac{{zy}}{{x}+{z}}>{x}\right\} \\ $$$${operations} \\ $$$$\left\{{x}^{\mathrm{2}+\frac{{x}}{\mathrm{2}}} >\mathrm{0}\right\}\:{is}\:{the}\:{comparator} \\ $$ Commented by…
Question Number 198339 by cherokeesay last updated on 18/Oct/23 Answered by witcher3 last updated on 18/Oct/23 $$\mathrm{didint}\:\mathrm{existe}\: \\ $$$$\left(\mathrm{x},\mathrm{y}\right)=\left(\frac{\mathrm{1}}{\mathrm{n}},\mathrm{2}−\frac{\mathrm{1}}{\mathrm{n}}\right);\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{n}\rightarrow\infty \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\right)\rightarrow\infty…
Question Number 198332 by necx122 last updated on 17/Oct/23 $${Of}\:{men}\:{that}\:{attended}\:{a}\:{party},\:\mathrm{30}\:{of} \\ $$$${them}\:{wore}\:{coats},\:\mathrm{20}\:{wore}\:{ties}\:{and}\:\mathrm{10} \\ $$$${wore}\:{hats}.\:{There}\:{were}\:\mathrm{4}\:{men}\:{who}\:{wore} \\ $$$${coats}\:{and}\:{tie},\:{or}\:{tie}\:{and}\:{hat}\:{or}\:{coat}\:{and} \\ $$$${hat}.\:\mathrm{14}\:{men}\:{wore}\:{tie}\:{only}\:{with}\:{no} \\ $$$${coat}\:{and}\:{hat}.\:{Find}\:{the}\:{number}\:{of}\:{men} \\ $$$${who}\:{wore}: \\ $$$$\left.{a}\right)\:{coat},\:{tie}\:{and}\:{hat} \\…
Question Number 198296 by York12 last updated on 17/Oct/23 $${Let}\:\left\{{x}_{{r}} \right\}_{{r}=\mathrm{1}} ^{{n}} {be}\:{n}\:{positive}\:{real}\:{numbers}\:{Show}\:{That}: \\ $$$$\frac{{x}_{\mathrm{1}} }{\mathrm{1}+{x}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{{x}_{\mathrm{2}} }{\mathrm{1}+{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} }+…+\frac{{x}_{{n}} }{\mathrm{1}+{x}_{\mathrm{1}} ^{\mathrm{2}}…