Question Number 194552 by BaliramKumar last updated on 09/Jul/23 $$\mathrm{If}\:{a},\:{b}\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers}\:\&\:\mathrm{4cos}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}{b}^{\mathrm{2}} +\mathrm{5}}{{a}+\mathrm{3}{b}},\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left({a}+{b}\right)\:\mathrm{will}\:\mathrm{be}: \\ $$$$\left(\mathrm{a}\right)\:\frac{\mathrm{7}}{\mathrm{6}}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\frac{\mathrm{5}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\frac{\mathrm{11}}{\mathrm{6}}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\frac{\mathrm{17}}{\mathrm{12}} \\ $$ Commented by Frix last updated on…
Question Number 194528 by BaliramKumar last updated on 09/Jul/23 $$\bigstar\:\mathrm{Let}\:\mathrm{N}\:\mathrm{be}\:\mathrm{a}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{where}\:\mathrm{N}\leq\mathrm{100}. \\ $$$$\:\:\:\:\:\:\:\:\mathrm{If}\:\mathrm{HCF}\left(\mathrm{N},\:\mathrm{100}\right)\:=\:\mathrm{1}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{all}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{N}\:? \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{400}\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1000}\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2000}\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{4000} \\ $$ Answered by mahdipoor last updated on 09/Jul/23…
Question Number 194475 by BaliramKumar last updated on 08/Jul/23 $$\mathrm{How}\:\mathrm{many}\:\mathrm{sets}\:\mathrm{of}\:\mathrm{two}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{720}\:\mathrm{are}\: \\ $$$$\mathrm{coprime}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other}? \\ $$$$\left(\mathrm{A}\right)\:\mathrm{63}\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{64}\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{65}\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{67} \\ $$$$ \\ $$ Commented by MM42 last updated on 08/Jul/23…
Question Number 194448 by York12 last updated on 07/Jul/23 $${If}\:{a}\:,\:{b}\:,\:{c}\:>\mathrm{0}\:,\:{such}\:{that}\:{a}+{b}+{c}=\mathrm{3} \\ $$$${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{ab}}+\frac{\mathrm{1}}{\mathrm{1}+{ac}}+\frac{\mathrm{1}}{\mathrm{1}+{bc}}\geqslant\frac{\mathrm{9}}{\mathrm{2}\left(\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 194421 by York12 last updated on 06/Jul/23 $$ \\ $$$${If}\:{a}\:,\:{b}\:,\:{c}\:>\mathrm{0}\:,\:{such}\:{that}\:{a}+{b}+{c}=\mathrm{3} \\ $$$${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{ab}}+\frac{\mathrm{1}}{\mathrm{1}+{ac}}+\frac{\mathrm{1}}{\mathrm{1}+{bc}}\geqslant\frac{\mathrm{9}}{\mathrm{2}\left(\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}\right)} \\ $$ Commented by York12 last updated on 07/Jul/23…
Question Number 194343 by BaliramKumar last updated on 04/Jul/23 $$\lfloor\mathrm{9}.\overset{−} {\mathrm{9}}\rfloor\:=\:? \\ $$ Answered by MM42 last updated on 04/Jul/23 $$\mathrm{9} \\ $$ Answered by…
Question Number 194312 by Mingma last updated on 03/Jul/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Let-a-b-c-be-real-positive-numbers-amp-abc-1-prove-that-ab-a-5-b-5-ab-bc-b-5-c-5-bc-ac-a-5-c-5-ac-1-
Question Number 194297 by York12 last updated on 02/Jul/23 $${Let}\:{a}\:,\:{b}\:,\:{c}\:{be}\:\:{real}\:{positive}\:{numbers}\:\&\: \\ $$$${abc}=\mathrm{1}\: \\ $$$${prove}\:{that} \\ $$$$\frac{{ab}}{{a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{ab}}+\frac{{bc}}{{b}^{\mathrm{5}} +{c}^{\mathrm{5}} +{bc}}+\frac{{ac}}{{a}^{\mathrm{5}} +{c}^{\mathrm{5}} +{ac}}\leqslant\mathrm{1} \\ $$ Answered…
Question Number 194158 by Frix last updated on 28/Jun/23 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{solutions}: \\ $$$$\frac{\mathrm{1}}{{s}}+\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{{u}}+\frac{\mathrm{1}}{{v}}=\mathrm{1} \\ $$$$\mathrm{With}\:{s},\:{t},\:{u},\:{v}\:\in\mathbb{N}\:\mathrm{and}\:{s}<{t}<{u}<{v} \\ $$ Answered by AST last updated on 29/Jun/23 $${s}<{t}\Rightarrow\frac{\mathrm{1}}{{s}}>\frac{\mathrm{1}}{{t}}\Rightarrow\frac{\mathrm{4}}{{s}}>\frac{\mathrm{1}}{{s}}+\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{{u}}+\frac{\mathrm{1}}{{v}}=\mathrm{1}\Rightarrow{s}<\mathrm{4} \\…
Question Number 194144 by mr W last updated on 28/Jun/23 $${fill}\:{with}\:{different}\:{natural}\:{numbers}: \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{19}}=\frac{\mathrm{1}}{\left(\:\:\right)}+\frac{\mathrm{1}}{\left(\:\:\right)}+\frac{\mathrm{1}}{\left(\:\:\right)}+\frac{\mathrm{1}}{\left(\:\:\right)} \\ $$ Answered by York12 last updated on 28/Jun/23 $${egyptian}\:{fractions} \\ $$$$\frac{\mathrm{1}}{{k}}=\frac{\mathrm{1}}{{k}+\mathrm{1}}+\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)}…