Menu Close

Category: Arithmetic

Question-194015

Question Number 194015 by Rupesh123 last updated on 26/Jun/23 Answered by witcher3 last updated on 26/Jun/23 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\mathrm{f}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} \\ $$$${f}_{{k}+\mathrm{1}} ={f}_{{k}} +{f}_{{k}−\mathrm{1}} ;\mathrm{f}_{\mathrm{1}} =\mathrm{f}_{\mathrm{2}}…

find-1-2-1-3-4-1-3-1-3-

Question Number 194021 by mr W last updated on 26/Jun/23 $${find}\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{2}}+\sqrt[{\mathrm{3}}]{\mathrm{4}}}=? \\ $$ Commented by BaliramKumar last updated on 26/Jun/23 $$\left(\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{1}\right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \: \\ $$…

Let-n-amp-k-be-positive-integers-and-let-S-be-a-set-of-n-points-in-The-plane-such-that-For-any-point-P-of-S-there-are-at-least-K-points-of-S-Equidistant-from-p-Prove-that-k-lt-1-2-2n-

Question Number 193853 by York12 last updated on 21/Jun/23 $$ \\ $$$$\boldsymbol{{Let}}\:\boldsymbol{{n}}\:\&\:\boldsymbol{{k}}\:\boldsymbol{{be}}\:\boldsymbol{{positive}}\:\boldsymbol{{integers}}\:\boldsymbol{{and}}\:\boldsymbol{{let}} \\ $$$$\boldsymbol{{S}}\:\boldsymbol{{be}}\:\boldsymbol{{a}}\:\boldsymbol{{set}}\:\boldsymbol{{of}}\:\boldsymbol{{n}}\:\boldsymbol{{points}}\:\boldsymbol{{in}}\:\boldsymbol{{The}}\:\boldsymbol{{plane}}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:: \\ $$$$\boldsymbol{{For}}\:\boldsymbol{{any}}\:\boldsymbol{{point}}\:\boldsymbol{{P}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{there}}\:\boldsymbol{{are}}\:\boldsymbol{{at}}\:\boldsymbol{{least}}\:\boldsymbol{{K}}\:\boldsymbol{{points}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{Equidistant}}\:\boldsymbol{{from}}\:\boldsymbol{{p}} \\ $$$$\boldsymbol{{Prove}}\:\boldsymbol{{that}}\:\boldsymbol{{k}}<\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\mathrm{2}\boldsymbol{{n}}} \\ $$ Terms of Service Privacy Policy…

Question-193756

Question Number 193756 by Shlock last updated on 19/Jun/23 Answered by talminator2856792 last updated on 19/Jun/23 $$\:\:\mathrm{7}\left(\mathrm{7}{a}\:+\:{b}\right)\:+\:{c}\:=\:\mathrm{7}\left(\mathrm{40}\right)\:+\:\mathrm{6} \\ $$$$\:\: \\ $$$$\:\:\rightarrow\:{c}\:=\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\:\:\rightarrow\:{c}\:=\:\mathrm{6} \\ $$$$\:\:…

prove-that-1-2-3-4-5-6-7-8-9-10-99-100-gt-1-13-

Question Number 193760 by York12 last updated on 19/Jun/23 $${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{5}}{\mathrm{6}}×\frac{\mathrm{7}}{\mathrm{8}}×\frac{\mathrm{9}}{\mathrm{10}}…×\frac{\mathrm{99}}{\mathrm{100}}>\frac{\mathrm{1}}{\mathrm{13}}\:\:\: \\ $$ Answered by MM42 last updated on 19/Jun/23 $${can}\:{br}\:{show}\::\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\:\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}}\:>\:\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{4}{n}+\mathrm{1}}} \\…

Question-193449

Question Number 193449 by Mingma last updated on 14/Jun/23 Commented by Frix last updated on 14/Jun/23 $$\mathrm{The}\:\mathrm{remainder}\:\mathrm{of}\:\mathrm{10}^{{n}} −\mathrm{1}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{625} \\ $$$$\mathrm{is}\:\mathrm{624}\:\mathrm{for}\:{n}\geqslant\mathrm{4} \\ $$ Commented by Mingma…

Question-193438

Question Number 193438 by Mingma last updated on 14/Jun/23 Answered by qaz last updated on 14/Jun/23 $${log}_{\mathrm{3}} \left(\mathrm{9}{x}−\mathrm{3}\right)=\mathrm{1}+{log}_{\mathrm{3}} \left(\mathrm{3}{x}−\mathrm{1}\right)\:\:\:\:\:,{log}_{\mathrm{3}} \left({x}−\frac{\mathrm{1}}{\mathrm{3}}\right)={log}_{\mathrm{3}} \left(\mathrm{3}{x}−\mathrm{1}\right)−\mathrm{1} \\ $$$${log}_{\mathrm{3}} \left(\mathrm{3}{x}−\mathrm{1}\right)={y} \\…

Question-193280

Question Number 193280 by Mingma last updated on 09/Jun/23 Answered by AST last updated on 09/Jun/23 $$\mathrm{1000}\overset{\_\_\_\_} {{def}}+\overset{\_\_\_\_} {{abc}}=\mathrm{6000}\overset{\_\_\_\_} {{abc}}+\mathrm{6}\overset{\_\_\_\_} {{def}}\Rightarrow\frac{{def}}{{abc}}=\frac{\mathrm{5999}}{\mathrm{994}}=\frac{\mathrm{857}}{\mathrm{142}} \\ $$$$\Rightarrow\overset{\_\_\_\_\_\_\_\_} {{abcdef}}=\mathrm{142857} \\…