Question Number 130085 by liberty last updated on 22/Jan/21 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:\begin{cases}{\mathrm{a}=\mathrm{r}^{\mathrm{2}} −\mathrm{2rs}−\mathrm{s}^{\mathrm{2}} }\\{\mathrm{b}=\mathrm{r}^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} }\\{\mathrm{c}=\mathrm{r}^{\mathrm{2}} +\mathrm{2rs}−\mathrm{s}^{\mathrm{2}} }\end{cases} \\ $$$$\:\mathrm{for}\:\mathrm{some}\:\mathrm{integers}\:\mathrm{r},\mathrm{s}\:\mathrm{then}\:\mathrm{a}^{\mathrm{2}} ,\mathrm{b}^{\mathrm{2}} ,\mathrm{c}^{\mathrm{2}} \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{square}\:\mathrm{in}\:\mathrm{AP}. \\ $$ Answered…
Question Number 64465 by Theophilus111 last updated on 18/Jul/19 $${vy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64297 by mathmax by abdo last updated on 16/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64158 by peter frank last updated on 14/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 64153 by meme last updated on 14/Jul/19 $${solve}\:{to}\:{z}^{\mathrm{2}} \:\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{24} \\ $$ Answered by mr W last updated on 15/Jul/19 $$\left({x}−{y}\right)\left({x}+{y}\right)=\mathrm{24}={a}×{b}=\mathrm{1}×\mathrm{24}=\mathrm{2}×\mathrm{12}=\mathrm{3}×\mathrm{8}=\mathrm{4}×\mathrm{6} \\…
Question Number 63975 by aliesam last updated on 11/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 63956 by meme last updated on 11/Jul/19 $${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{24} \\ $$ Answered by meme last updated on 12/Jul/19 $${solve}\:{at}\:{z}^{\mathrm{2}} \\ $$ Terms…
Question Number 63792 by aliesam last updated on 09/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 63597 by aliesam last updated on 05/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 63561 by aliesam last updated on 05/Jul/19 Answered by MJS last updated on 05/Jul/19 $$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}−\mathrm{1}\right)×\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{2}{k}= \\ $$$$=\left[\mathrm{1}×\mathrm{3}×\mathrm{5}×…×\left(\mathrm{2}{n}−\mathrm{1}\right)\right]×\left[\mathrm{2}×\mathrm{4}×\mathrm{6}×…×\mathrm{2}{n}\right]= \\ $$$$=\mathrm{1}×\mathrm{2}×\mathrm{3}×\mathrm{4}×…×\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)=…