Menu Close

Category: Arithmetic

Question-56597

Question Number 56597 by Tawa1 last updated on 19/Mar/19 Commented by Tawa1 last updated on 19/Mar/19 $$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{an}\:\mathrm{arithmetico}\:−\:\mathrm{geometric}\:\mathrm{series}, \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinity}.\:\:\: \\ $$$$\boldsymbol{\mathrm{Again}} \\ $$$$\:\:\:\:\mathrm{How}\:\mathrm{does}\:\mathrm{the}\:\mathrm{3x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{above}\:\mathrm{solution}\:\mathrm{disappear}. \\ $$$$\mathrm{From}\:\:\:\:\:\:\:\mathrm{3x}\:+\:\left(\mathrm{2x}^{\mathrm{2}}…

Find-the-nth-term-of-the-sequence-a-1-2-1-4-1-8-7-62-b-1-2-1-4-1-8-0-

Question Number 56594 by Joel578 last updated on 19/Mar/19 $$\mathrm{Find}\:\mathrm{the}\:{n}\mathrm{th}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence} \\ $$$$\left({a}\right)\:\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{4}},\:\frac{\mathrm{1}}{\mathrm{8}},\:\frac{\mathrm{7}}{\mathrm{62}},\:… \\ $$$$\left({b}\right)\:\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{4}},\:\frac{\mathrm{1}}{\mathrm{8}},\:\mathrm{0},\:… \\ $$ Answered by MJS last updated on 19/Mar/19 $$\mathrm{there}\:\mathrm{are}\:\mathrm{always}\:\infty\:\mathrm{possibilities} \\…

Let-f-x-x-1-x-2-and-r-0-f-x-r-be-a-convergent-series-Find-the-value-of-x-such-that-n-0-r-0-x-1-x-2-r-n-4-

Question Number 122036 by physicstutes last updated on 13/Nov/20 $$\mathrm{Let}\:\:{f}\left({x}\right)\:=\:\left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right)\:\mathrm{and}\:\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\left[{f}\left({x}\right)\right]^{{r}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{convergent}\:\mathrm{series} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right)^{{r}} \right]^{{n}} \:=\:\mathrm{4}\: \\ $$…

Question-187560

Question Number 187560 by Mingma last updated on 18/Feb/23 Answered by mr W last updated on 19/Feb/23 $${i}\:{think}\:{there}\:{is}\:{only}\:{one}\:{possibility}. \\ $$$${blue}\:{numbers}\:{show}\:{the}\:{order}\:{in}\:{which} \\ $$$${i}\:{determined}\:{the}\:{red}\:{numbers}. \\ $$$$\mathrm{62}/\mathrm{2}=\mathrm{31}\:\:\left(\mathrm{2}\right) \\…

Evaluate-the-sum-2-3-1-2-2-3-2-1-2-3-3-4-1-2-n-1-3-2-n-1-

Question Number 121949 by liberty last updated on 12/Nov/20 $$\:\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{sum}\:\:\frac{\mathrm{2}}{\mathrm{3}+\mathrm{1}}\:+\:\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{2}} +\mathrm{1}}\:+\:\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{4}} +\mathrm{1}}+\:…+\:\frac{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }{\mathrm{3}^{\mathrm{2}^{\mathrm{n}} } \:+\mathrm{1}}\:. \\ $$ Answered by bobhans last updated on…