Menu Close

Category: Arithmetic

Magnitude-A-varies-proportionally-with-B-squared-4-and-magnitude-B-varies-proportionally-with-the-root-of-C-5-Also-when-A-is-16-B-is-12-and-C-takes-the-value-81-Calculate-the-value-that-A

Question Number 209860 by lmcp1203 last updated on 23/Jul/24 $$ \\ $$$$\mathrm{Magnitude}\:\mathrm{A}\:\mathrm{varies}\:\mathrm{proportionally}\:\mathrm{with}\:\left(\mathrm{B}\:\mathrm{squared}\:+\:\mathrm{4}\right)\:\mathrm{and}\:\mathrm{magnitude}\:\mathrm{B}\:\mathrm{varies}\:\mathrm{proportionally}\:\mathrm{with} \\ $$$$\left({t}\mathrm{he}\:\mathrm{root}\:\mathrm{of}\:\mathrm{C}\right)\:−\:\mathrm{5}.\:\mathrm{Also}\:\mathrm{when}\:\mathrm{A}\:\mathrm{is}\:\mathrm{16}\:,\:\mathrm{B}\:\mathrm{is}\:\mathrm{12}\:\mathrm{and}\:\mathrm{C}\:\mathrm{takes}\:\mathrm{the}\:\mathrm{value}\:\mathrm{81}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{that}\:\mathrm{A}\:\mathrm{takes} \\ $$$$\mathrm{wh}{e}\mathrm{n}\:\mathrm{C}\:\mathrm{is}\:\mathrm{49}.\:\:\:{help}\:\:{me}.\:{please}.\:{thanks} \\ $$ Answered by mr W last updated on…

Question-209602

Question Number 209602 by peter frank last updated on 16/Jul/24 Answered by som(math1967) last updated on 16/Jul/24 $$\:{let}\:{number}={x} \\ $$$$\:\frac{\mathrm{120}{x}}{\mathrm{100}}\:−\frac{\mathrm{85}{x}}{\mathrm{100}}=\mathrm{14} \\ $$$$\:\frac{\mathrm{35}{x}}{\mathrm{100}}=\mathrm{14} \\ $$$$\Rightarrow{x}=\frac{\mathrm{14}×\mathrm{100}}{\mathrm{35}}=\mathrm{40} \\…

Question-209452

Question Number 209452 by peter frank last updated on 10/Jul/24 Answered by Ghisom last updated on 10/Jul/24 $$\mathrm{12}\:\mathrm{units} \\ $$$$−\mathrm{4}\:\mathrm{units}\:\left(\mathrm{12}/\mathrm{3}\right)\:\mathrm{for}\:\mathrm{sugar}\:=\:\mathrm{8}\:\mathrm{units} \\ $$$$−\mathrm{2}\:\mathrm{units}\:\left(\mathrm{8}/\mathrm{4}\right)\:\mathrm{for}\:\mathrm{soap}\:=\:\mathrm{6}\:\mathrm{units} \\ $$$$\mathrm{6}\:\mathrm{units}\:=\:\mathrm{6000} \\…

Question-209342

Question Number 209342 by essaad last updated on 07/Jul/24 Answered by Berbere last updated on 07/Jul/24 $${U}_{{n}+\mathrm{1}} ={f}\left({U}_{{n}} \right) \\ $$$${x}\overset{{f}} {\rightarrow}\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}};{f}\:{increase} \\ $$$${f}\left(\left[\mathrm{0},\mathrm{1}\right]\right)=\left[\mathrm{0},\frac{\mathrm{3}}{\mathrm{4}}\right]\subset\left[\mathrm{0},\mathrm{1}\right]…