Menu Close

Category: Arithmetic

k-1-4095-1-k-k-1-k-1-4-k-1-1-4-

Question Number 103673 by bobhans last updated on 16/Jul/20 4095k=11(k+k+1)(k4+k+14)? Answered by bramlex last updated on 16/Jul/20 1(k+k+1)(k4+k+14)×k+14k4k+14k4=$$\frac{\sqrt[{\mathrm{4}}]{\mathrm{k}+\mathrm{1}}−\sqrt[{\mathrm{4}}]{\mathrm{k}}}{\left(\sqrt{\mathrm{k}+\mathrm{1}}+\sqrt{\mathrm{k}}\right)\left(\sqrt{\mathrm{k}+\mathrm{1}}−\sqrt{\mathrm{k}}\right)}\:=\:\sqrt[{\mathrm{4}}]{\mathrm{k}+\mathrm{1}}−\sqrt[{\mathrm{4}}]{\mathrm{k}} \

Evaluate-1-1-2-3-3-2-3-4-5-3-4-5-2n-1-n-n-1-n-2-

Question Number 103648 by Lordose last updated on 16/Jul/20 Evaluate1123+3234+5345++2n1n(n+1)(n+2 Answered by Dwaipayan Shikari last updated on 16/Jul/20 Tn=2n1n(n+1)(n+2)$$\Sigma{T}_{{n}} =\Sigma\frac{{n}+{n}+\mathrm{2}−\mathrm{3}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}=\Sigma\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}+\Sigma\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}−\frac{\mathrm{3}}{\mathrm{2}}\Sigma\frac{\mathrm{2}+{n}−{n}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}…