Menu Close

Category: Arithmetic

prove-that-k-1-2k-r-0-k-1-r-k-r-1-k-

Question Number 164555 by mnjuly1970 last updated on 18/Jan/22 $$ \\ $$$$\:\:\:{prove}\:\:{that} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\left(\underset{\:{k}−\mathrm{1}} {\overset{\mathrm{2}{k}} {\:}}\:\right)\:\overset{?} {=}\:\underset{{r}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\:\left(\:\underset{\:{r}} {\overset{\:{k}} {\:}}\:\:\:\right)\:\overset{\:\:} {\left(}\underset{\:{r}+\mathrm{1}} {\overset{\:\:{k}}…

Question-99011

Question Number 99011 by bemath last updated on 18/Jun/20 Commented by MJS last updated on 18/Jun/20 $$\mathrm{strange}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{question} \\ $$$$\mathrm{the}\:\mathrm{given}\:\mathrm{answers}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}\:\mathrm{are}\:\mathrm{one}\:\mathrm{possible} \\ $$$$\mathrm{solution}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{an} \\ $$$$\mathrm{unique}\:\mathrm{solution} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\frac{\mathrm{1}}{\mathrm{16}}…

n-1-k-1-1-n-k-1-1-k-2-n-n-k-1-4-

Question Number 98848 by  M±th+et+s last updated on 16/Jun/20 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+{k}+\mathrm{1}} \left(\mathrm{1}+{k}\right)^{\mathrm{2}} }{{n}\left({n}+{k}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$ Terms of Service Privacy Policy Contact:…

a-n-k-1-n-1-sin-2k-1-pi-2n-cos-2-k-1-pi-2n-cos-2-kpi-2n-find-lim-n-a-n-n-3-

Question Number 98557 by  M±th+et+s last updated on 14/Jun/20 $${a}_{{n}} =\underset{{k}=\mathrm{1}\:} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{sin}\left(\frac{\left(\mathrm{2}{k}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)}{{cos}^{\mathrm{2}} \left(\frac{\left({k}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right){cos}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}}\right)} \\ $$$$ \\ $$$${find}\:\:\underset{{n}\rightarrow\infty} {{lim}}\frac{{a}_{{n}} }{{n}^{\mathrm{3}} } \\ $$ Terms…

prove-that-n-0-m-0-n-1-2-m-1-2-n-1-m-1-2-3-n-1-2-m-n-m-1-2-3-2-2-G-2-2-2-2-1-4-0-0-1-2-1-2-3-pi-

Question Number 98434 by  M±th+et+s last updated on 14/Jun/20 $${prove}\:{that} \\ $$$$\Omega=\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\underset{{m}=\mathrm{0}\:} {\overset{+\infty} {\sum}}\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right).\Gamma\left({m}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left({n}+\mathrm{1}\right).\Gamma\left({m}+\mathrm{1}\right)}.\frac{\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} .\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{m}} }{\left({n}+{m}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{2}}}.{G}_{\mathrm{2},\mathrm{2}} ^{\mathrm{2},\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\mid_{\mathrm{0}\:\:,\:\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}} \right) \\…