Menu Close

Category: Arithmetic

prove-the-compact-form-of-multivariable-Taylor-series-T-B-n-1-n-2-n-d-0-i-0-n-d-x-i-d-i-i-0-n-d-n-i-i-0-n-d-x-i-f-

Question Number 98116 by  M±th+et+s last updated on 11/Jun/20 provethecompactformofmultivariableTaylorseries$$\left({T}\ast{B}\right)=\underset{{n}=\mathrm{1},{n}=\mathrm{2}..{n}_{{d}} =\mathrm{0}} {\overset{\infty} {\sum}}\frac{\prod_{\mathrm{i}=\mathrm{0}} ^{{n}_{{d}} } \left({x}_{\mathrm{i}} −{d}_{\mathrm{i}} \right)}{\prod_{\mathrm{i}=\mathrm{0}} ^{{n}_{{d}}…

A-small-ball-is-dropped-from-a-height-of-1m-into-a-horizontal-floor-Each-time-it-rebounces-to-3-5-of-the-height-it-has-fallen-a-show-that-when-the-ball-strikes-the-ground-for-the-third-time-it-has-

Question Number 32312 by NECx last updated on 23/Mar/18 Asmallballisdroppedfromaheightof1mintoahorizontalfloor.Eachtimeitrebouncesto3/5oftheheightithasfallen.a)showthatwhentheballstrikesthegroundforthethirdtime,ithastravelledadistanceof2.92m$$\left.{b}\right){Show}\:{that}\:{the}\:{total}\:{distance} \

Question-163340

Question Number 163340 by mathlove last updated on 06/Jan/22 Answered by Rasheed.Sindhi last updated on 06/Jan/22 a2b2a+b=ab=[1+11+1100(111+1100)]=[1+11+11001+11+1100]$$\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{100}}}\right)=\mathrm{2}×\frac{\mathrm{100}}{\mathrm{101}}=\frac{\mathrm{200}}{\mathrm{101}}\:\:\:\left({b}\right)\checkmark…