Menu Close

Category: Arithmetic

Given-a-b-and-c-3-real-numbers-which-satisfy-the-equation-a-b-c-312-c-a-192-Find-these-real-numbers-such-that-they-form-3-consecutive-terms-of-a-Geometric-Progression-

Question Number 94573 by Ar Brandon last updated on 19/May/20 $$\mathrm{Given}\:\mathrm{a},\:\mathrm{b},\:\mathrm{and}\:\mathrm{c},\:\mathrm{3}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{which}\:\mathrm{satisfy} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\begin{cases}{\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{312}}\\{\mathrm{c}+\mathrm{a}=\mathrm{192}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{these}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\:\mathrm{they}\:\mathrm{form} \\ $$$$\mathrm{3}\:\mathrm{consecutive}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Geometric}\:\mathrm{Progression}. \\ $$ Commented by mr W last updated…

let-give-a-prime-number-p-gt-2-and-a-D-a-p-1-and-suppose-that-the-equation-x-2-a-p-have-a-solution1-1-prove-that-a-p-1-2-1-p-2-prove-that-x-2-1-p-p-1-4-

Question Number 29035 by abdo imad last updated on 03/Feb/18 $${let}\:{give}\:{a}\:{prime}\:{number}\:{p}>\mathrm{2}\:\:{and}\:{a}\:/{D}\left({a},{p}\right)=\mathrm{1}\:{and}\: \\ $$$$\left.{suppose}\:{that}\:{the}\:{equation}\:{x}^{\mathrm{2}} \equiv\:{a}\left[{p}\right]{have}\:{a}\:{solution}\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:{a}^{\frac{{p}−\mathrm{1}}{\mathrm{2}}} \:\:\:\equiv\:\mathrm{1}\:\left[{p}\right] \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\:{x}^{\mathrm{2}} \equiv\:−\mathrm{1}\left[{p}\right]\:\Leftrightarrow\:\:\:{p}\equiv\:\mathrm{1}\:\left[\mathrm{4}\right] \\ $$ Terms of Service…

p-2m-1-is-a-prime-number-prove-that-1-p-1-1-p-2-m-2-1-m-1-p-

Question Number 29036 by abdo imad last updated on 03/Feb/18 $${p}=\mathrm{2}{m}+\mathrm{1}\:{is}\:{a}\:{prime}\:{number}\:{prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\left({p}−\mathrm{1}\right)!\equiv\:−\mathrm{1}\left[{p}\right] \\ $$$$\left.\mathrm{2}\right)\:\left({m}!\right)^{\mathrm{2}} \equiv\:\left(−\mathrm{1}\right)^{{m}+\mathrm{1}} \:\left[{p}\right] \\ $$ Terms of Service Privacy Policy Contact:…

Determine-the-least-number-of-4-digits-which-is-perfect-square-Method-of-finding-is-required-

Question Number 28932 by Rasheed.Sindhi last updated on 01/Feb/18 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{least}\:\mathrm{number}\:\mathrm{of}\:\mathrm{4}\:\mathrm{digits}, \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}. \\ $$$$\mathrm{Method}\:\mathrm{of}\:\mathrm{finding}\:\mathrm{is}\:\boldsymbol{\mathrm{required}}. \\ $$ Answered by mrW2 last updated on 01/Feb/18 $${x}={n}^{\mathrm{2}} \geqslant\mathrm{1000}…

S-k-1-2002-k-2-1-k-2-1-k-1-2-

Question Number 159891 by tounghoungko last updated on 22/Nov/21 $$\:\:\:\:{S}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{2002}\:} {\sum}}\sqrt{\frac{{k}^{\mathrm{2}} +\mathrm{1}}{{k}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }}\:=? \\ $$ Answered by chhaythean last updated on 22/Nov/21 $$\mathrm{S}=\underset{\mathrm{k}=\mathrm{1}}…

In-a-competition-a-school-awarded-medals-in-different-categories-36-medals-in-dance-12-in-dramatics-and-18-medals-in-music-If-these-medals-went-to-total-45-and-only-4-persons-got-medals-in-all-three

Question Number 28805 by NECx last updated on 30/Jan/18 $${In}\:{a}\:{competition},\:{a}\:{school}\:{awarded} \\ $$$${medals}\:{in}\:{different}\:{categories}. \\ $$$$\mathrm{36}\:{medals}\:{in}\:{dance},\mathrm{12}\:{in}\:{dramatics} \\ $$$${and}\:\mathrm{18}\:{medals}\:{in}\:{music}.{If}\:{these} \\ $$$${medals}\:{went}\:{to}\:{total}\:\mathrm{45},{and}\:{only} \\ $$$$\mathrm{4}\:{persons}\:{got}\:{medals}\:{in}\:{all}\:{three} \\ $$$${catogories}.{Using}\:{set}\:{notations}, \\ $$$${how}\:{many}\:{received}\:{in}\:{exactly} \\…