Menu Close

Category: Arithmetic

How-many-numbers-x-are-found-between-9000-and-11000-and-verify-x-12-19-x-5-13-x-9-11-

Question Number 152139 by Ar Brandon last updated on 26/Aug/21 $$\mathrm{How}\:\mathrm{many}\:\mathrm{numbers}\:{x}\:\mathrm{are}\:\mathrm{found}\:\mathrm{between}\:\mathrm{9000}\:\mathrm{and}\:\mathrm{11000} \\ $$$$\mathrm{and}\:\mathrm{verify}\:{x}=\mathrm{12}\left[\mathrm{19}\right],\:{x}=\mathrm{5}\left[\mathrm{13}\right],\:{x}=\mathrm{9}\left[\mathrm{11}\right]\:? \\ $$ Commented by Rasheed.Sindhi last updated on 26/Aug/21 $$\mathrm{One}\:\left({x}=\mathrm{10899}\right) \\ $$…

n-N-prove-9-n-3-n-1-3-n-2-3-

Question Number 21067 by youssoufab last updated on 11/Sep/17 $$\forall{n}\in\mathbb{N},\:{prove}\:\mathrm{9}\mid\left[{n}^{\mathrm{3}} +\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\left({n}+\mathrm{2}\right)^{\mathrm{3}} \right] \\ $$ Answered by dioph last updated on 12/Sep/17 $${n}^{\mathrm{3}} +\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\left({n}+\mathrm{2}\right)^{\mathrm{3}}…

a-b-a-b-

Question Number 20927 by amaresh pradhan last updated on 08/Sep/17 $$\left({a}+{b}\right)×\left({a}+{b}\right) \\ $$ Answered by Joel577 last updated on 08/Sep/17 $$=\:\left({a}\:+\:{b}\right)^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} \:+\:\mathrm{2}{ab}\:+\:{b}^{\mathrm{2}} \\ $$…

How-many-zeroes-0-there-in-1-2-3-4-99-100-

Question Number 20907 by DKumar last updated on 07/Sep/17 $${How}\:{many}\:{zeroes}\:\left(\mathrm{0}\right)\:{there}\:{in}\:\mathrm{1}×\mathrm{2}×\mathrm{3}×\mathrm{4}……….\mathrm{99}×\mathrm{100}\: \\ $$ Answered by dioph last updated on 07/Sep/17 $$\mathrm{zeros}\:\mathrm{in}\:\mathrm{number}\:=\:\mathrm{maximum}\:\mathrm{integer} \\ $$$${n}\:\mathrm{such}\:\mathrm{that}\:\mathrm{10}^{{n}} =\mathrm{2}^{{n}} \mathrm{5}^{{n}} \:\mathrm{divides}\:\mathrm{the}\:\mathrm{number}.…

What-is-the-number-of-triples-a-b-c-of-positive-integers-such-that-i-a-lt-b-lt-c-lt-10-and-ii-a-b-c-10-form-the-sides-of-a-quadrilateral-

Question Number 20810 by Tinkutara last updated on 03/Sep/17 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triples}\:\left({a},\:{b},\:{c}\right)\:\mathrm{of} \\ $$$$\mathrm{positive}\:\mathrm{integers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left(\mathrm{i}\right)\:{a}\:<\:{b}\:<\:{c}\:<\:\mathrm{10}\:\mathrm{and}\:\left(\mathrm{ii}\right)\:{a},\:{b},\:{c},\:\mathrm{10}\:\mathrm{form} \\ $$$$\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{quadrilateral}? \\ $$ Commented by Tinkutara last updated on 04/Sep/17…

Dear-mr-w-i-want-discuss-for-equation-find-minimum-and-maximum-value-of-xy-2-with-constraint-x-2-y-2-6-my-way-short-cut-x-2-y-2-3-max-3-2-2-5-min-3-2-1

Question Number 86343 by jagoll last updated on 28/Mar/20 $$\mathrm{Dear}\:\mathrm{mr}\:\mathrm{w}.\:\mathrm{i}\:\mathrm{want}\: \\ $$$$\mathrm{discuss}\:\mathrm{for}\:\mathrm{equation} \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{xy}\:+\mathrm{2}\:\mathrm{with}\:\mathrm{constraint} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}\:} =\:\mathrm{6}. \\ $$$$\mathrm{my}\:\mathrm{way}\:\left(\mathrm{short}\:\mathrm{cut}\right) \\ $$$$\Rightarrow\:\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{y}^{\mathrm{2}}…

If-a-natural-number-of-3-digit-for-example-N-abc-such-that-N-100a-10b-c-a-b-c-Find-all-N-of-any-number-of-digits-e-g-N-1-2-145-

Question Number 151801 by ajfour last updated on 23/Aug/21 $${If}\:{a}\:{natural}\:{number}\:{of}\:\mathrm{3}\:{digit} \\ $$$$\left({for}\:{example}\right){N}={abc}\:\:{such}\:{that} \\ $$$${N}=\mathrm{100}{a}+\mathrm{10}{b}+{c}={a}!+{b}!+{c}! \\ $$$${Find}\:{all}\:{N}\:{of}\:{any}\:{number}\:{of} \\ $$$${digits}.\: \\ $$$${e}.{g}.\:\:{N}=\mathrm{1},\:\mathrm{2},\:\mathrm{145},\:… \\ $$ Terms of Service…

Integers-1-2-3-n-where-n-gt-2-are-written-on-a-board-Two-numbers-m-k-such-that-1-lt-m-lt-n-1-lt-k-lt-n-are-removed-and-the-average-of-the-remaining-numbers-is-found-to-be-17-W

Question Number 20693 by Tinkutara last updated on 31/Aug/17 $$\mathrm{Integers}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:….,\:{n},\:\mathrm{where}\:{n}\:>\:\mathrm{2},\:\mathrm{are} \\ $$$$\mathrm{written}\:\mathrm{on}\:\mathrm{a}\:\mathrm{board}.\:\mathrm{Two}\:\mathrm{numbers}\:{m},\:{k} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{1}\:<\:{m}\:<\:{n},\:\mathrm{1}\:<\:{k}\:<\:{n}\:\mathrm{are} \\ $$$$\mathrm{removed}\:\mathrm{and}\:\mathrm{the}\:\mathrm{average}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{remaining}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{be}\:\mathrm{17}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{removed}\:\mathrm{numbers}? \\ $$ Answered…