Menu Close

Category: Arithmetic

Question-151641

Question Number 151641 by Tawa11 last updated on 22/Aug/21 Answered by Kamel last updated on 22/Aug/21 $${S}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{3}{k}} {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{3}{n}}…

Find-the-sum-of-the-series-below-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-3020-

Question Number 86088 by Serlea last updated on 27/Mar/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\mathrm{below}: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}−\mathrm{4}−\mathrm{5}−\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}−\mathrm{10}−\mathrm{11}−\mathrm{12}+\mathrm{13}+\mathrm{14}+\mathrm{15}…−\mathrm{3020} \\ $$ Commented by Kunal12588 last updated on 27/Mar/20 $${did}\:{yoy}\:{forgot}\:\mathrm{10}? \\ $$$${I}\:{think}\:{series}\:{should}\:{be}\:{like} \\…

Let-the-sum-n-1-9-1-n-n-1-n-2-written-in-its-lowest-terms-be-p-q-Find-the-value-of-q-p-

Question Number 20523 by Tinkutara last updated on 27/Aug/17 $$\mathrm{Let}\:\mathrm{the}\:\mathrm{sum}\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\frac{\mathrm{1}}{{n}\left({n}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{2}\right)}\:\mathrm{written} \\ $$$$\mathrm{in}\:\mathrm{its}\:\mathrm{lowest}\:\mathrm{terms}\:\mathrm{be}\:\frac{{p}}{{q}}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{q}\:−\:{p}. \\ $$ Answered by ajfour last updated on 27/Aug/17…

sin-1-x-a-x-dx-

Question Number 151587 by peter frank last updated on 22/Aug/21 $$\int\mathrm{sin}^{−\mathrm{1}} \sqrt{\frac{\mathrm{x}}{\mathrm{a}+\mathrm{x}}}\:\mathrm{dx} \\ $$ Answered by MJS_new last updated on 22/Aug/21 $${u}'=\mathrm{1}\:\rightarrow\:{u}={x} \\ $$$${v}=\mathrm{arcsin}\:\sqrt{\frac{{x}}{{x}+{a}}}\:\rightarrow\:{v}'=\frac{\sqrt{{a}}}{\mathrm{2}\left({x}+{a}\right)\sqrt{{x}}} \\…

Question-85857

Question Number 85857 by M±th+et£s last updated on 25/Mar/20 Answered by mind is power last updated on 26/Mar/20 $$\left.{n}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right)+\mathrm{1}\right)\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}}…

x-x-1-2-x-2-x-2-2-x-3-x-3-2-x-10-x-10-2-

Question Number 85832 by jagoll last updated on 25/Mar/20 $$\left(\mathrm{x}+\mathrm{x}^{−\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{−\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{−\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$+\:…\:+\:\left(\mathrm{x}^{\mathrm{10}} +\mathrm{x}^{−\mathrm{10}} \right)^{\mathrm{2}} \:=\: \\ $$ Commented…

if-t-m-1-2t-n-1-so-proof-t-3m-1-2t-m-n-1-help-please-

Question Number 20235 by naziri1920@gmail.com last updated on 24/Aug/17 $$ \\ $$$${if}\:\:\:\:\:\:\:\:{t}_{\left({m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({n}+\mathrm{1}\right)} \\ $$$${so}\:{proof} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}_{\left(\mathrm{3}{m}+\mathrm{1}\right)} =\mathrm{2}{t}_{\left({m}+{n}+\mathrm{1}\right)\:\:\:\:\:\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{help}\:{please}……… \\ $$$$ \\ $$$$ \\…