Question Number 62763 by naka3546 last updated on 25/Jun/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 62753 by peter frank last updated on 24/Jun/19 $${The}\:{normal}\:{at}\:{the}\:{point} \\ $$$${P}\left(\mathrm{4cos}\:\theta,\mathrm{3sin}\:\theta\right)\:{on}\:{the} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{\mathrm{16}}\:+\frac{{y}^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1}\:{meets} \\ $$$${the}\:{x}−{axis}\:{and}\:{y}−{axis} \\ $$$${at}\:{A}\:{and}\:{B}\:{respectively} \\ $$$${show}\:{that}\:{locus}\:{of}\:{the} \\ $$$${mid}−{point}\:{of}\:{AB}\:{is}\:{an}…
Question Number 193052 by a.lgnaoui last updated on 02/Jun/23 $$\boldsymbol{\mathrm{determiner}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{valeur}}\:\boldsymbol{\mathrm{de}}\:\:\boldsymbol{\mathrm{r}} \\ $$ Commented by a.lgnaoui last updated on 02/Jun/23 Answered by AST last updated on…
Question Number 127509 by mr W last updated on 30/Dec/20 Commented by mr W last updated on 31/Dec/20 $${if}\:{both}\:{ellipses}\:{have}\:{the}\:{same}\:{shape} \\ $$$${as}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1},\:{determine}\:\frac{{b}}{{a}}=?…
Question Number 127460 by ajfour last updated on 30/Dec/20 Commented by ajfour last updated on 30/Dec/20 $${Q}.\mathrm{127127}\:\:\:\left({Revisit}\right) \\ $$$${Given}\:\:{p},{q}\:\:\:;\:\:{find}\:{R}. \\ $$ Answered by ajfour last…
Question Number 61810 by peter frank last updated on 09/Jun/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 192836 by Tawa11 last updated on 29/May/23 Commented by Tawa11 last updated on 29/May/23 $$\mathrm{Please}\:\mathrm{prove} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 192765 by Mingma last updated on 26/May/23 Answered by ajfour last updated on 26/May/23 Commented by ajfour last updated on 26/May/23 $$\mathrm{tan}\:\theta=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\…
Question Number 127127 by mr W last updated on 27/Dec/20 Commented by mr W last updated on 27/Dec/20 $${This}\:{question}\:{was}\:{once}\:{asked}. \\ $$$$ \\ $$$${Find}\:{the}\:{radius}\:{of}\:{circle}\:{in}\:{terms}\:{of} \\ $$$${parameters}\:{a}\:{and}\:{b}\:{of}\:{the}\:{ellipse}.…
Question Number 127116 by physicstutes last updated on 27/Dec/20 $$\mathrm{Given}\:\mathrm{a}\:\mathrm{sequence}\:\left({u}_{{n}} \right)\:\mathrm{defined}\:\mathrm{reculsively}\:\mathrm{by} \\ $$$$\:{u}_{{n}+\mathrm{1}} \:=\:\mathrm{3}{u}_{{n}} +\:\mathrm{4}{u}_{{n}−\mathrm{1}} ,\:\:{u}_{\mathrm{0}} =\:\mathrm{1}\:,\:{u}_{\mathrm{2}} \:=\:\mathrm{3} \\ $$$$\:\mathrm{show}\:\mathrm{that}\:\:{u}_{{n}+\mathrm{1}} −\mathrm{4}{u}_{{n}} \:=\:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \left(\mathrm{3}{u}_{\mathrm{0}} −\mathrm{4}{u}_{\mathrm{1}} \right)…