Question Number 190678 by cortano12 last updated on 08/Apr/23 Answered by som(math1967) last updated on 09/Apr/23 $$\:{x}^{\mathrm{2}} ={AG}^{\mathrm{2}} −{GD}^{\mathrm{2}} \\ $$$$=\mathrm{12}^{\mathrm{2}} +{GE}^{\mathrm{2}} −{GD}^{\mathrm{2}} \\ $$$$=\mathrm{12}^{\mathrm{2}}…
Question Number 190665 by cortano12 last updated on 08/Apr/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 125017 by Ggjj last updated on 07/Dec/20 $$\sqrt{\mathrm{25}\:=\mathrm{5}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 190370 by cortano12 last updated on 02/Apr/23 Answered by som(math1967) last updated on 02/Apr/23 Commented by som(math1967) last updated on 02/Apr/23 $${ar}\:{of}\bigtriangleup{FDC}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{10}×\mathrm{5}=\mathrm{25}{cm}^{\mathrm{2}} \\…
Question Number 190272 by alcohol last updated on 30/Mar/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 190263 by alcohol last updated on 30/Mar/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124627 by ajfour last updated on 04/Dec/20 Commented by ajfour last updated on 04/Dec/20 $${parabola}\:{is}\:\:\:{y}={x}^{\mathrm{2}} ,\:\:{radius}=\mathrm{1}. \\ $$$${Find}\:{AB}_{{min}} . \\ $$ Answered by…
Question Number 59058 by necx1 last updated on 04/May/19 Commented by MJS last updated on 04/May/19 $$\mathrm{same}\:\mathrm{as}\:\mathrm{qu}.\:\mathrm{58377} \\ $$ Answered by tanmay last updated on…
Question Number 190106 by cortano12 last updated on 27/Mar/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 59000 by Learner last updated on 03/May/19 Answered by MJS last updated on 03/May/19 $$\mathrm{the}\:\mathrm{centers}\:\mathrm{of}\:\mathrm{the}\:\mathrm{small}\:\mathrm{circles}\:\mathrm{form}\:\mathrm{a}\:\mathrm{square} \\ $$$$\mathrm{with}\:\mathrm{side}\:\mathrm{length}\:\mathrm{2}{r}\:\Rightarrow\:\mathrm{its}\:\mathrm{diagonal}\:=\mathrm{2}\sqrt{\mathrm{2}}{r}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{big}\:\mathrm{circle}\:=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){r}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{area}\:=\left[\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){r}\right]^{\mathrm{2}} \pi−\mathrm{4}{r}^{\mathrm{2}} \pi=…