Question Number 122111 by ajfour last updated on 14/Nov/20 Commented by ajfour last updated on 14/Nov/20 $${Find}\:{sides}\:{of}\:{maximum}\:{area} \\ $$$${right}\:{angled}\:{triangle}\:{inscribed} \\ $$$${in}\:{an}\:{ellipse}. \\ $$ Commented by…
Question Number 187541 by a.lgnaoui last updated on 18/Feb/23 $${Quel}\:{est}\:{la}\:{condition}\:{necessaire} \\ $$$${et}\:{sufisante}\:{pour}\:{que}\:{les}\:{medianes} \\ $$$${des}\:{triangles}\:{ABC}\:{et}\:\:{CDE}\:{soient} \\ $$$${alignes}\:{avec}\:{le}\:{point}\:\boldsymbol{{c}} \\ $$$$ \\ $$ Commented by a.lgnaoui last updated…
Question Number 121955 by 676597498 last updated on 12/Nov/20 $$\mathrm{pls}\:\mathrm{help} \\ $$$$\mathrm{k}\left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\mathrm{k}\left(\mathrm{v}+\mathrm{3}\right)=\mathrm{k}\left(\mathrm{v}\right) \\ $$$$\mathrm{k}\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{k}\left(\mathrm{v}\right) \\ $$ Terms of Service Privacy Policy…
Question Number 56390 by Tinkutara last updated on 15/Mar/19 Commented by Tinkutara last updated on 18/Mar/19 Answer is Commented by Tinkutara last updated on 18/Mar/19 Answered…
Question Number 187362 by ajfour last updated on 16/Feb/23 Commented by ajfour last updated on 16/Feb/23 $${blue}\:{curve}:\:\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${black}\:{one}:\:\:\:\:{y}={x}^{\mathrm{3}} −{x}+{k} \\ $$$${Find}\:{the}\:{equation}\:{of}\:{the}\:{shown} \\ $$$${common}\:{tangent}.…
Question Number 187227 by ajfour last updated on 14/Feb/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 187142 by a.lgnaoui last updated on 14/Feb/23 $$\:{Montrer}\:{que}: \\ $$$$\mathrm{4}{r}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \\ $$$$ \\ $$ Commented by a.lgnaoui last updated…
Question Number 187059 by ajfour last updated on 13/Feb/23 Commented by ajfour last updated on 13/Feb/23 $${Bigger}\:{curve}\:\:\:{y}={x}^{\mathrm{3}} −{x}−{c} \\ $$$${the}\:{other}\:\:\:{y}={m}\left({x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} \left({x}−{s}\right) \\ $$$${say}\:{their}\:{intersections}\:{be}\:{at} \\ $$$${x}={p},\:{q},\:{t}…
Question Number 121355 by john santu last updated on 07/Nov/20 Answered by liberty last updated on 07/Nov/20 $$\mathrm{using}\:\mathrm{the}\:\mathrm{formula}\:\Rightarrow\left(\mathrm{x}−\mathrm{x}_{\mathrm{1}} \right)\left(\mathrm{x}−\mathrm{x}_{\mathrm{2}} \right)+\left(\mathrm{y}−\mathrm{y}_{\mathrm{1}} \right)\left(\mathrm{y}−\mathrm{y}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{where}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{1}}…
Question Number 186835 by ajfour last updated on 11/Feb/23 Commented by ajfour last updated on 11/Feb/23 $${Curve}\:{is}\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${Horizontal}\:{lines}\:{y}=\mathrm{0}\:{and}\:{y}={c} \\ $$$${Say}\:{a}\:{root}\:{of}\:{curve}\:{be}\:{x}={p}. \\ $$$${A}\left({p},\mathrm{0}\right)\:\:\: \\…