Menu Close

Category: Coordinate Geometry

Question-55071

Question Number 55071 by peter frank last updated on 17/Feb/19 Answered by mr W last updated on 17/Feb/19 $${the}\:{line}\:{through}\:{origin}\:{and}\:{perpendicular}\:{to} \\ $$$${line}\:{lx}+{my}+{n}=\mathrm{0}\:{is}: \\ $$$${mx}−{ly}=\mathrm{0}\:{or}\:{y}=\frac{{m}}{{l}}{x} \\ $$$${let}\:\mathrm{tan}\:\theta_{\mathrm{0}}…

3-2-5-1-4-3-2-5-1-4-1-4-

Question Number 120275 by bramlexs22 last updated on 30/Oct/20 $$\:\sqrt[{\mathrm{4}\:}]{\frac{\mathrm{3}+\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}{\mathrm{3}−\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}}\:=?\: \\ $$ Answered by TANMAY PANACEA last updated on 30/Oct/20 $$\mathrm{3}−\mathrm{2}\left(\mathrm{5}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$=\mathrm{3}−\left(\mathrm{2}^{\mathrm{4}} ×\mathrm{5}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\…