Question Number 54481 by ajfour last updated on 04/Feb/19 Commented by ajfour last updated on 04/Feb/19 $${Find}\:{eq}.\:{of}\:{circle}\:{and}\:{coordinates} \\ $$$${of}\:{points}\:{A},{B},{C},{D}\:{in}\:{terms}\:{of}\:\boldsymbol{{c}}. \\ $$ Answered by MJS last…
Question Number 54447 by ajfour last updated on 03/Feb/19 Commented by ajfour last updated on 14/Feb/19 $${Find}\:{coordinates}\:{of}\:{A}\:{and}\:{C}.\:\:\:\:\:\:\:\: \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on…
Question Number 54364 by peter frank last updated on 02/Feb/19 $$\mathrm{If}\:\:\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of}\:\mathrm{per} \\ $$$$\mathrm{pendicular}\:\mathrm{segment}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{whose}\:\mathrm{intercept}\:\mathrm{are} \\ $$$$\mathrm{a}\:\:\mathrm{and}\:\:\:\:\mathrm{b}.\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{2}} } \\…
Question Number 119892 by peter frank last updated on 27/Oct/20 Answered by TANMAY PANACEA last updated on 28/Oct/20 $$\left({at}_{\mathrm{1}} ^{\mathrm{2}} ,\mathrm{2}{at}_{\mathrm{1}} \right)\:\left({at}_{\mathrm{2}} ^{\mathrm{2}} ,\mathrm{2}{at}_{\mathrm{2}} \right)…
Question Number 54270 by peter frank last updated on 01/Feb/19 $${Find}\:{the}\:{equation}\:{to}\:{two} \\ $$$${circles}\:{which}\:{touch}\:{the}\: \\ $$$${x}−{axis}\:{at}\:{the}\:{origin} \\ $$$${and}\:{also}\:{touch}\:{the}\:{line} \\ $$$$\mathrm{12}{x}+\mathrm{5}{y}=\mathrm{60} \\ $$ Answered by ajfour last…
Question Number 54242 by ajfour last updated on 01/Feb/19 Answered by mr W last updated on 01/Feb/19 $${parabola}: \\ $$$${y}={h}−\frac{{x}^{\mathrm{2}} }{{c}} \\ $$$${ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}}…
Question Number 54229 by ajfour last updated on 31/Jan/19 Commented by ajfour last updated on 31/Jan/19 $${Find}\:{maximum}\:{inradius}\:{of}\:{circle} \\ $$$${in}\:{terms}\:{of}\:{ellipse}\:{parameters}\:{a},{b}. \\ $$ Answered by mr W…
Question Number 54170 by ajfour last updated on 30/Jan/19 Commented by ajfour last updated on 30/Jan/19 $${Determine}\:{b}\:{in}\:{terms}\:{of}\:{a},{p},{R}. \\ $$ Answered by ajfour last updated on…
Question Number 54160 by ajfour last updated on 30/Jan/19 Commented by ajfour last updated on 30/Jan/19 $${Find}\:{maximum}\:{area}\:{of}\:\bigtriangleup{ABC}\:{in} \\ $$$${terms}\:{of}\:{R}\:{and}\:{r}. \\ $$ Answered by mr W…
Question Number 185180 by Rupesh123 last updated on 18/Jan/23 Answered by 123564 last updated on 20/Jan/23 Terms of Service Privacy Policy Contact: info@tinkutara.com