Question Number 52558 by ajfour last updated on 09/Jan/19 Commented by ajfour last updated on 10/Jan/19 $${eq}.\:{of}\:{parabola}\:{be}\:{y}=\:\frac{{x}^{\mathrm{2}} }{{a}}\:\:{and} \\ $$$${eq}.\:{of}\:{line}\:\:{be}\:{y}=\:{mx}\:\:\:\left({m}=\mathrm{tan}\:\phi\right), \\ $$$${if}\:{both}\:{circles}\:{touch}\:{the}\:{line}\:{at}\:{a} \\ $$$${same}\:{point}\:{and}\:{circle}\:{in}\:{red}\:{has} \\…
Question Number 52487 by ajfour last updated on 08/Jan/19 Commented by ajfour last updated on 08/Jan/19 $${Find}\:\boldsymbol{\alpha}_{{max}} \:{and}\:\boldsymbol{\alpha}_{{min}} \:\:{in}\:{terms}\:{of}\:{p},{q},{a},{b}. \\ $$ Commented by mr W…
Question Number 183426 by a.lgnaoui last updated on 25/Dec/22 $${surface}\:{de}\:{la}\:{partie}\:{bleu} \\ $$$${du}\:{graphe}? \\ $$ Commented by a.lgnaoui last updated on 25/Dec/22 Commented by cherokeesay last…
Question Number 183324 by Acem last updated on 25/Dec/22 $${Find}\:{the}\:{minimum}\:{distance}\:{between}\:{C}_{{f}} \:,\:{C}_{{g}} \\ $$$$\:;\:{C}_{{f}} \::\:{y}^{\mathrm{2}} =\:\mathrm{4}{ax}\:,\:{C}_{{g}} :\:{x}^{\mathrm{2}} +\:{y}^{\mathrm{2}} −\mathrm{24}{ay}+\:\mathrm{128}{a}^{\mathrm{2}} =\:\mathrm{0} \\ $$ Commented by Acem last…
Question Number 183307 by ajfour last updated on 24/Dec/22 Commented by ajfour last updated on 24/Dec/22 $${Find}\:{minimum}\:{length}\:{from}\:{one} \\ $$$${parabola}\:{to}\:{the}\:{other}. \\ $$ Answered by mr W…
Question Number 183246 by cortano1 last updated on 24/Dec/22 Answered by mr W last updated on 24/Dec/22 Commented by mr W last updated on 24/Dec/22…
Question Number 52138 by peter frank last updated on 03/Jan/19 Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jan/19 Commented by tanmay.chaudhury50@gmail.com last updated on 04/Jan/19 Commented…
Question Number 52137 by peter frank last updated on 03/Jan/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 52072 by peter frank last updated on 02/Jan/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 52058 by peter frank last updated on 02/Jan/19 Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19 $${eqn}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\: \\ $$$${focus}\left({ae},\mathrm{0}\right) \\…