Menu Close

Category: Coordinate Geometry

Prove-that-the-perpendicilar-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-meets-on-the-circle-x-2-y-2-a-2-b-2-

Question Number 51613 by peter frank last updated on 29/Dec/18 $${Prove}\:{that}\:{the}\:{perpendicilar} \\ $$$${tangent}\:{to}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:{meets}\:{on}\:{the} \\ $$$${circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} .…

The-tangent-at-P-to-an-ellipse-meets-directrix-at-Q-prove-that-the-line-joining-the-corresponding-focus-to-P-and-Q-are-perpendicular-

Question Number 51588 by peter frank last updated on 28/Dec/18 $${The}\:{tangent}\:{at}\:{P}\:\:{to}\:{an}\:{ellipse} \\ $$$${meets}\:{directrix}\:{at}\:{Q} \\ $$$${prove}\:{that}\:{the}\:{line} \\ $$$${joining}\:{the}\:{corresponding} \\ $$$${focus}\:{to}\:{P}\:{and}\:{Q}\:{are} \\ $$$${perpendicular} \\ $$ Answered by…

The-line-y-mx-c-touches-ellipse-x-2-a-2-y-2-b-2-1-prove-that-the-foot-of-perpendicular-from-focus-into-this-line-lie-on-auxillary-circle-x-2-y-2-a-2-

Question Number 51590 by peter frank last updated on 28/Dec/18 $${The}\:{line}\:{y}={mx}+{c}\:{touches} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${prove}\:{that}\:{the}\:{foot}\:{of}\: \\ $$$${perpendicular}\:{from} \\ $$$${focus}\:{into}\:{this}\:{line}\:{lie}\:{on} \\ $$$${auxillary}\:{circle}\:…

For-ellipse-16x-2-4y-2-96x-8y-84-0-find-i-centre-ii-verteces-iii-focus-iv-directrix-v-length-of-major-and-minor-axis-vi-ecentricity-vii-graph-the-ellipse-

Question Number 51492 by peter frank last updated on 27/Dec/18 $${For}\:{ellipse}\: \\ $$$$\mathrm{16}{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} +\mathrm{96}{x}−\mathrm{8}{y}−\mathrm{84}=\mathrm{0} \\ $$$${find} \\ $$$$\left.{i}\right){centre} \\ $$$$\left.{ii}\right){verteces} \\ $$$$\left.{iii}\right){focus} \\ $$$$\left.{iv}\right){directrix}…

Given-that-y-mx-c-is-equation-of-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-find-coordinate-of-point-of-contact-

Question Number 51489 by peter frank last updated on 27/Dec/18 $${Given}\:{that}\:{y}={mx}+{c} \\ $$$${is}\:{equation}\:{of}\:\:{tangent} \\ $$$${to}\:{the}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}\:} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${find}\:{coordinate}\:{of}\: \\ $$$${point}\:{of}\:{contact}. \\ $$…

Question-182542

Question Number 182542 by cortano1 last updated on 11/Dec/22 Commented by cortano1 last updated on 11/Dec/22 $$\mathrm{Radius}\:\mathrm{semi}\:\mathrm{circle}\:\mathrm{PQR}\:=\:\mathrm{24}\:\mathrm{cm} \\ $$$$\mathrm{radius}\:\mathrm{semi}\:\mathrm{circle}\:\mathrm{BML}\:=\:\mathrm{21cm} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{ABCD}\:. \\ $$ Answered by…