Menu Close

Category: Coordinate Geometry

x-t-1-y-2t-3-z-t-2-x-3t-2-y-t-1-z-t-1-Are-these-two-lines-located-in-the-same-plane-or-not-where-t-R-

Question Number 182772 by Acem last updated on 14/Dec/22 $$\:\chi\:\begin{cases}{{x}=\:{t}+\mathrm{1}}\\{{y}=\:\mathrm{2}{t}−\mathrm{3}}\\{{z}=\:−{t}\:+\mathrm{2}}\end{cases}\:\:\:\Delta\begin{cases}{{x}=\:\mathrm{3}{t}\:+\mathrm{2}}\\{{y}=\:−{t}−\mathrm{1}\:\:\:}\\{{z}=\:{t}+\mathrm{1}}\end{cases}\:\begin{cases}{{Are}\:\:{these}\:{two}\:{lines}\:{located}}\\{{in}\:{the}\:{same}\:{plane}\:{or}\:{not}?}\\{{where}\:{t}\in\:\mathbb{R}}\end{cases} \\ $$$$ \\ $$ Answered by mr W last updated on 14/Dec/22 $${Method}\:{I} \\ $$$${line}\:\mathrm{1}:\:\left(\mathrm{1},−\mathrm{3},\mathrm{2}\right)+{s}\left(\mathrm{1},\mathrm{2},−\mathrm{1}\right)…

Question-51694

Question Number 51694 by peter frank last updated on 29/Dec/18 Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18 $${point}\:{p}\left({acos}\theta,{bsin}\theta\right) \\ $$$${tangent}\:{at}\:{point}\:{p}\:\:{is}\:\frac{{xcos}\theta}{{a}}+\frac{{ysin}\theta}{{b}}=\mathrm{1} \\ $$$$\frac{{ysin}\theta}{{b}}=\mathrm{1}−\frac{{xcos}\theta}{{a}} \\ $$$${y}=\frac{{b}}{{sin}\theta}−\frac{{b}}{{sin}\theta}×\frac{{cos}\theta}{{a}}{x}\:\:\left[{slope}=−\frac{{b}}{{a}}{cot}\theta\right] \\…

Find-the-equation-of-the-ellipse-with-ecentricity-1-2-and-the-focus-2-1-Does-the-line-x-3-touches-ellipse-if-so-at-what-point-if-line-x-5-is-the-line-of-direction-

Question Number 51612 by peter frank last updated on 29/Dec/18 $${Find}\:{the}\:{equation}\:{of} \\ $$$${the}\:{ellipse}\:{with}\:{ecentricity} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{the}\:{focus}\:\left(\mathrm{2},\mathrm{1}\right) \\ $$$${Does}\:{the}\:{line}\:{x}=\mathrm{3}\:{touches} \\ $$$${ellipse}.{if}\:{so}\:{at}\:{what}\: \\ $$$${point}?{if}\:{line}\:{x}=\mathrm{5}\:{is}\:{the} \\ $$$${line}\:{of}\:{direction}. \\ $$…

Prove-that-the-perpendicilar-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-meets-on-the-circle-x-2-y-2-a-2-b-2-

Question Number 51613 by peter frank last updated on 29/Dec/18 $${Prove}\:{that}\:{the}\:{perpendicilar} \\ $$$${tangent}\:{to}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:{meets}\:{on}\:{the} \\ $$$${circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} .…

The-tangent-at-P-to-an-ellipse-meets-directrix-at-Q-prove-that-the-line-joining-the-corresponding-focus-to-P-and-Q-are-perpendicular-

Question Number 51588 by peter frank last updated on 28/Dec/18 $${The}\:{tangent}\:{at}\:{P}\:\:{to}\:{an}\:{ellipse} \\ $$$${meets}\:{directrix}\:{at}\:{Q} \\ $$$${prove}\:{that}\:{the}\:{line} \\ $$$${joining}\:{the}\:{corresponding} \\ $$$${focus}\:{to}\:{P}\:{and}\:{Q}\:{are} \\ $$$${perpendicular} \\ $$ Answered by…

The-line-y-mx-c-touches-ellipse-x-2-a-2-y-2-b-2-1-prove-that-the-foot-of-perpendicular-from-focus-into-this-line-lie-on-auxillary-circle-x-2-y-2-a-2-

Question Number 51590 by peter frank last updated on 28/Dec/18 $${The}\:{line}\:{y}={mx}+{c}\:{touches} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${prove}\:{that}\:{the}\:{foot}\:{of}\: \\ $$$${perpendicular}\:{from} \\ $$$${focus}\:{into}\:{this}\:{line}\:{lie}\:{on} \\ $$$${auxillary}\:{circle}\:…

For-ellipse-16x-2-4y-2-96x-8y-84-0-find-i-centre-ii-verteces-iii-focus-iv-directrix-v-length-of-major-and-minor-axis-vi-ecentricity-vii-graph-the-ellipse-

Question Number 51492 by peter frank last updated on 27/Dec/18 $${For}\:{ellipse}\: \\ $$$$\mathrm{16}{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} +\mathrm{96}{x}−\mathrm{8}{y}−\mathrm{84}=\mathrm{0} \\ $$$${find} \\ $$$$\left.{i}\right){centre} \\ $$$$\left.{ii}\right){verteces} \\ $$$$\left.{iii}\right){focus} \\ $$$$\left.{iv}\right){directrix}…

Given-that-y-mx-c-is-equation-of-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-find-coordinate-of-point-of-contact-

Question Number 51489 by peter frank last updated on 27/Dec/18 $${Given}\:{that}\:{y}={mx}+{c} \\ $$$${is}\:{equation}\:{of}\:\:{tangent} \\ $$$${to}\:{the}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}\:} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${find}\:{coordinate}\:{of}\: \\ $$$${point}\:{of}\:{contact}. \\ $$…