Question Number 51134 by ajfour last updated on 24/Dec/18 Commented by ajfour last updated on 24/Dec/18 $${Find}\:\theta\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b}\:{such}\:{that} \\ $$$${the}\:{two}\:{coloured}\:{areas}\:{are}\:{equal}. \\ $$ Answered by mr W…
Question Number 50979 by peter frank last updated on 23/Dec/18 $$\left.{a}\right){Normal}\:{to}\:{any}\:{point}\:{on} \\ $$$${the}\:{hyperbola}\:{XY}={C} \\ $$$${meet}\:{the}\:{x}−{axis}\:{at}\:{A} \\ $$$${and}\:{tangents}\:{meets} \\ $$$${the}\:{y}−{axis}\:{at}\:{B}.{find}\:{the} \\ $$$${locus}\:{of}\:{the}\:{mid}\:{point}\:{of}\:{AB} \\ $$$$\left.{b}\right){find}\:\:{the}\:{equation}\:{of}\: \\ $$$${assymptotes}\:{of}…
Question Number 50977 by peter frank last updated on 22/Dec/18 $${Find}\:{interms}\:{of}\:\:{a},{b}\:{the} \\ $$$${value}\:{of}\:{c}\:{which}\:{makes} \\ $$$${the}\:{line}\:{y}={mx}+{c} \\ $$$${a}\:{tangent}\:{to}\:{the}\:{parabola} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{ax}.{also}\:{obtain}\:{the}\: \\ $$$${coordinate}\:{of}\:{the}\:{point}\:{of} \\ $$$${contact} \\…
Question Number 50963 by ajfour last updated on 22/Dec/18 Commented by ajfour last updated on 22/Dec/18 $${Find}\:{equation}\:{of}\:{parabola}\:{for}\:{the} \\ $$$${two}\:{coloured}\:{areas}\:{to}\:{be}\:{equal}. \\ $$ Answered by mr W…
Question Number 50952 by ajfour last updated on 22/Dec/18 Commented by ajfour last updated on 22/Dec/18 $${Find}\:{maximum}\:{area}\:{between}\:{the} \\ $$$${parabola}\:{and}\:{its}\:{chord}\:{of}\:{length}\:{l}. \\ $$ Commented by mr W…
Question Number 50898 by ajfour last updated on 21/Dec/18 Commented by ajfour last updated on 21/Dec/18 $${If}\:{length}\:{of}\:{BP}\:\:{is}\:{maximum} \\ $$$${and}\:{equal}\:{to}\:\boldsymbol{{l}},\:{and}\:{the}\:{two}\:{coloured} \\ $$$${areas}\:{equal},\:{find}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{of}\:{ellipse}. \\ $$ Answered by…
Question Number 116363 by peter frank last updated on 03/Oct/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 50820 by ajfour last updated on 20/Dec/18 Commented by ajfour last updated on 20/Dec/18 $${Choose}\:{your}\:{origin}\:{and}\:{find}\: \\ $$$${equation}\:{of}\:{parabola}\:{such}\:{that} \\ $$$${it}\:{has}\:{maximum}\:{length}\:{inside} \\ $$$${ellipse}\:\left({parameters}\:{a}\:{and}\:{b}\right). \\ $$…
Question Number 116267 by bemath last updated on 02/Oct/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{parabola}\:\mathrm{that} \\ $$$$\mathrm{passes}\:\mathrm{through}\:\mathrm{points}\:\left(\mathrm{1},\mathrm{2}\right)\:,\left(\mathrm{3},\mathrm{4}\right)\: \\ $$$$\mathrm{and}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}=−\mathrm{x}+\frac{\mathrm{25}}{\mathrm{3}} \\ $$ Answered by bobhans last updated on 02/Oct/20 $$\mathrm{let}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{parabola}\:\mathrm{is}\: \\…
Question Number 116239 by bemath last updated on 02/Oct/20 $$\mathrm{a}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{x}−\mathrm{axis}\:,\:\mathrm{y}−\mathrm{axis} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}−\mathrm{4y}+\mathrm{6}=\mathrm{0}. \\ $$$$\mathrm{what}\:\mathrm{its}\:\mathrm{the}\:\mathrm{equation}? \\ $$ Answered by bemath last updated on 02/Oct/20 $$\mathrm{say}\:\mathrm{P}\left(\mathrm{a},\mathrm{b}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{centre}\:\mathrm{point}\:\mathrm{the}\:\mathrm{circle} \\…