Question Number 48250 by ajfour last updated on 21/Nov/18 Commented by ajfour last updated on 21/Nov/18 $${Find}\:{minimum}\:{area}\:{of}\:\bigtriangleup{ABC} \\ $$$${in}\:{terms}\:{of}\:{ellipse}\:{parameters} \\ $$$${a}\:{and}\:{b}. \\ $$ Commented by…
Question Number 48246 by ajfour last updated on 21/Nov/18 Commented by ajfour last updated on 21/Nov/18 $${Find}\:{a}/{b}\:,\:{if}\:{the}\:{ellipse}\:{parameters} \\ $$$${are}\:{even}\:{a}\:{and}\:{b}. \\ $$ Answered by mr W…
Question Number 113740 by bemath last updated on 15/Sep/20 $${In}\:{triangle}\:{ABC}\:{has}\:{positive}\:{integer} \\ $$$${sides}\:;\:\angle{A}\:=\:\mathrm{2}\:\angle{B}\:{and}\:\angle{C}\:>\:\frac{\pi}{\mathrm{2}}. \\ $$$${What}\:{is}\:{the}\:{minimum}\:{length} \\ $$$${of}\:{the}\:{perimeter}\:{of}\:{the}\:{triangle}?\: \\ $$ Answered by bobhans last updated on 15/Sep/20…
Question Number 48156 by ajfour last updated on 20/Nov/18 Commented by ajfour last updated on 20/Nov/18 $${Find}\:{R}\:{in}\:{terms}\:{of}\:{a}. \\ $$ Answered by ajfour last updated on…
Question Number 48143 by rahul 19 last updated on 20/Nov/18 $${The}\:{locus}\:{of}\:{P}\left({x},{y}\right)\:{such}\:{that} \\ $$$$\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{8}{y}+\mathrm{16}}−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}}=\mathrm{5}\:{is}? \\ $$ Commented by rahul 19 last updated…
Question Number 48121 by JDlix last updated on 19/Nov/18 $${can}\:{the}\:{directrix}\:{of}\:{a}\:{parabola}\:{be}\:{in}\:{the}\:{form}\:{y}={mx}+{b}\:\:? \\ $$$${or}\:{is}\:{there}\:{an}\:{inclined}\:{parabola}\:{with}\:{directrix}\:{and}\:{axis}\: \\ $$$${of}\:{symmetry}\:{in}\:{the}\:{form}\:{of}\:{y}={mx}+{b}\:\:?? \\ $$ Commented by MJS last updated on 19/Nov/18 $$\mathrm{you}\:\mathrm{can}\:\mathrm{rotate}\:\mathrm{a}\:\mathrm{parabola},\:\mathrm{so}\:\mathrm{this}\:\mathrm{is}\:\mathrm{indeed} \\…
Question Number 48113 by ajfour last updated on 19/Nov/18 Answered by MJS last updated on 20/Nov/18 $$\mathrm{circle}\:\mathrm{1} \\ $$$${c}_{\mathrm{1}} :\:\left({x}+{o}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} −{o}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{circle}\:\mathrm{2}…
Question Number 113644 by AbhishekBasnet last updated on 14/Sep/20 Answered by 1549442205PVT last updated on 14/Sep/20 $$\mathrm{The}\:\mathrm{intersection}\:\mathrm{point}\:\mathrm{of}\:\mathrm{two}\:\mathrm{lines} \\ $$$$\mathrm{x}−\mathrm{y}+\mathrm{1}=\mathrm{0}\:\mathrm{and}\:\mathrm{2x}−\mathrm{y}−\mathrm{1}=\mathrm{0}\:\mathrm{is}\:\mathrm{roots} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{system}:\begin{cases}{\mathrm{x}−\mathrm{y}+\mathrm{1}=\mathrm{0}}\\{\mathrm{2x}−\mathrm{y}−\mathrm{1}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{Substracting}\:\mathrm{two}\:\:\mathrm{above}\:\mathrm{equations} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{x}−\mathrm{2}=\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{2},\mathrm{y}=\mathrm{3}.\mathrm{Replace}\:…
Question Number 47939 by rahul 19 last updated on 17/Nov/18 Commented by rahul 19 last updated on 17/Nov/18 $${how}\:{to}\:{draw}\:{this}\:{graph}? \\ $$$${steps}\:{plss} \\ $$ Commented by…
Question Number 178833 by Spillover last updated on 22/Oct/22 Answered by cortano1 last updated on 22/Oct/22 $$\left(\mathrm{b}\right)\:\mathrm{L}_{\mathrm{3}} \equiv\:\mathrm{L}_{\mathrm{2}} +\mathrm{k}\left(\mathrm{L}_{\mathrm{1}} −\mathrm{L}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{10x}−\mathrm{12y}+\mathrm{40}+\mathrm{k}\left(\mathrm{8x}+\mathrm{8y}−\mathrm{44}\right)=\mathrm{0}…