Menu Close

Category: Coordinate Geometry

In-triangle-ABC-has-positive-integer-sides-A-2-B-and-C-gt-pi-2-What-is-the-minimum-length-of-the-perimeter-of-the-triangle-

Question Number 113740 by bemath last updated on 15/Sep/20 $${In}\:{triangle}\:{ABC}\:{has}\:{positive}\:{integer} \\ $$$${sides}\:;\:\angle{A}\:=\:\mathrm{2}\:\angle{B}\:{and}\:\angle{C}\:>\:\frac{\pi}{\mathrm{2}}. \\ $$$${What}\:{is}\:{the}\:{minimum}\:{length} \\ $$$${of}\:{the}\:{perimeter}\:{of}\:{the}\:{triangle}?\: \\ $$ Answered by bobhans last updated on 15/Sep/20…

can-the-directrix-of-a-parabola-be-in-the-form-y-mx-b-or-is-there-an-inclined-parabola-with-directrix-and-axis-of-symmetry-in-the-form-of-y-mx-b-

Question Number 48121 by JDlix last updated on 19/Nov/18 $${can}\:{the}\:{directrix}\:{of}\:{a}\:{parabola}\:{be}\:{in}\:{the}\:{form}\:{y}={mx}+{b}\:\:? \\ $$$${or}\:{is}\:{there}\:{an}\:{inclined}\:{parabola}\:{with}\:{directrix}\:{and}\:{axis}\: \\ $$$${of}\:{symmetry}\:{in}\:{the}\:{form}\:{of}\:{y}={mx}+{b}\:\:?? \\ $$ Commented by MJS last updated on 19/Nov/18 $$\mathrm{you}\:\mathrm{can}\:\mathrm{rotate}\:\mathrm{a}\:\mathrm{parabola},\:\mathrm{so}\:\mathrm{this}\:\mathrm{is}\:\mathrm{indeed} \\…

Question-113644

Question Number 113644 by AbhishekBasnet last updated on 14/Sep/20 Answered by 1549442205PVT last updated on 14/Sep/20 $$\mathrm{The}\:\mathrm{intersection}\:\mathrm{point}\:\mathrm{of}\:\mathrm{two}\:\mathrm{lines} \\ $$$$\mathrm{x}−\mathrm{y}+\mathrm{1}=\mathrm{0}\:\mathrm{and}\:\mathrm{2x}−\mathrm{y}−\mathrm{1}=\mathrm{0}\:\mathrm{is}\:\mathrm{roots} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{system}:\begin{cases}{\mathrm{x}−\mathrm{y}+\mathrm{1}=\mathrm{0}}\\{\mathrm{2x}−\mathrm{y}−\mathrm{1}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{Substracting}\:\mathrm{two}\:\:\mathrm{above}\:\mathrm{equations} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{x}−\mathrm{2}=\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{2},\mathrm{y}=\mathrm{3}.\mathrm{Replace}\:…

Question-178833

Question Number 178833 by Spillover last updated on 22/Oct/22 Answered by cortano1 last updated on 22/Oct/22 $$\left(\mathrm{b}\right)\:\mathrm{L}_{\mathrm{3}} \equiv\:\mathrm{L}_{\mathrm{2}} +\mathrm{k}\left(\mathrm{L}_{\mathrm{1}} −\mathrm{L}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{10x}−\mathrm{12y}+\mathrm{40}+\mathrm{k}\left(\mathrm{8x}+\mathrm{8y}−\mathrm{44}\right)=\mathrm{0}…