Menu Close

Category: Coordinate Geometry

Find-locus-of-point-P-from-which-tangents-PA-amp-PB-to-circles-x-2-y-2-a-2-and-x-2-y-2-b-2-respectively-are-perpendicular-

Question Number 47621 by rahul 19 last updated on 12/Nov/18 $${Find}\:{locus}\:{of}\:{point}\:{P}\:{from}\:{which} \\ $$$${tangents}\:{PA}\:\&\:{PB}\:{to}\:{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \:{respectively}\:{are}\:{perpendicular}. \\ $$ Commented by rahul…

Question-178647

Question Number 178647 by infinityaction last updated on 19/Oct/22 Answered by mr W last updated on 19/Oct/22 $${side}\:{length}\:={x} \\ $$$$\frac{{x}}{\mathrm{5}}=\frac{\mathrm{5}+\mathrm{1}}{{x}+\sqrt{\mathrm{5}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \\ $$$${x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }=\mathrm{30}−{x}^{\mathrm{2}}…

The-perimeter-of-a-triangle-is-84-cm-and-it-s-area-is-336-square-cm-If-the-length-of-one-side-of-triangle-is-30-cm-then-what-is-the-lengths-of-the-remaining-two-sides-of-triangle-

Question Number 113080 by bobhans last updated on 11/Sep/20 $$\mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{is} \\ $$$$\mathrm{84}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{area}\:\mathrm{is}\:\mathrm{336}\:\mathrm{square}\:\mathrm{cm}.\:\mathrm{If}\:\mathrm{the}\: \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{one}\:\mathrm{side}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{30}\:\mathrm{cm},\:\mathrm{then} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{two} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:? \\ $$ Answered by bemath last updated…

Question-113059

Question Number 113059 by bemath last updated on 11/Sep/20 Answered by john santu last updated on 11/Sep/20 $$\:\frac{\mathrm{1}}{\mathrm{2}.\mathrm{3}.\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{3}.\mathrm{4}.\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{4}.\mathrm{5}.\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{5}.\mathrm{6}.\mathrm{7}}\:= \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right).\left({k}+\mathrm{2}\right).\left({k}+\mathrm{3}\right)}\: \\ $$$$\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)\left({k}+\mathrm{3}\right)}=\frac{{p}}{{k}+\mathrm{1}}+\frac{{q}}{{k}+\mathrm{2}}+\frac{{r}}{{k}+\mathrm{3}} \\…

Question-47513

Question Number 47513 by ajfour last updated on 11/Nov/18 Commented by ajfour last updated on 11/Nov/18 $${Find}\:{coordinates}\:{of}\:{all}\:{points} \\ $$$${that}\:{have}\:{same}\:\bot\:{distance}\:{from} \\ $$$${from}\:{the}\:{three}\:{lines}. \\ $$$${For}\:{each}\:{such}\:{point}\:{this}\:\bot \\ $$$${distance}\:{may}\:{differ}.…

Question-47480

Question Number 47480 by ajfour last updated on 10/Nov/18 Answered by MrW3 last updated on 10/Nov/18 $${assume}\:{the}\:{major}\:{and}\:{minor}\:{axes} \\ $$$${are}\:{parallel}\:{to}\:{x}\:{axis}\:{and}\:{y}\:{axis}. \\ $$$${eqn}. \\ $$$$\frac{\left({x}−{h}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} }+\frac{\left({y}−{k}\right)^{\mathrm{2}}…

A-straight-line-through-2-2-intersects-lines-3-x-y-0-and-3-x-y-0-at-pts-A-amp-B-respectively-Find-equation-of-line-AB-so-that-OAB-is-equilateral-

Question Number 47457 by rahul 19 last updated on 10/Nov/18 $${A}\:{straight}\:{line}\:{through}\:\left(\mathrm{2},\mathrm{2}\right)\:{intersects} \\ $$$${lines}\:\sqrt{\mathrm{3}}{x}+{y}=\mathrm{0}\:{and}\:\sqrt{\mathrm{3}}{x}−{y}=\mathrm{0}\:{at}\:{pts}. \\ $$$${A}\:\&\:{B}\:{respectively}.\:{Find}\:{equation} \\ $$$${of}\:{line}\:{AB}\:{so}\:{that}\:\Delta{OAB}\:{is}\:{equilateral}? \\ $$ Answered by rahul 19 last updated…

Find-locus-of-a-point-P-which-moves-such-that-its-distance-from-the-line-y-3-x-7-is-same-as-its-distance-from-2-3-1-

Question Number 47438 by rahul 19 last updated on 10/Nov/18 $${Find}\:{locus}\:{of}\:{a}\:{point}\:{P}\:{which}\:{moves} \\ $$$${such}\:{that}\:{its}\:{distance}\:{from}\:{the}\:{line} \\ $$$${y}=\sqrt{\mathrm{3}}{x}−\mathrm{7}\:{is}\:{same}\:{as}\:{its}\:{distance}\:{from} \\ $$$$\left(\mathrm{2}\sqrt{\mathrm{3}},−\mathrm{1}\right)\:? \\ $$ Answered by ajfour last updated on…