Menu Close

Category: Coordinate Geometry

Question-178131

Question Number 178131 by cortano1 last updated on 13/Oct/22 Commented by Frix last updated on 13/Oct/22 $$\mathrm{the}\:\mathrm{radius}\:\mathrm{is}\:{s}×{r}\:\mathrm{with}\:{r}\:\mathrm{being}\:\mathrm{the}\:\mathrm{real} \\ $$$$\mathrm{solution}\:\mathrm{of} \\ $$$${r}^{\mathrm{3}} −\mathrm{2}{r}^{\mathrm{2}} +\frac{\mathrm{3}{r}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{is}…

Question-46935

Question Number 46935 by ajfour last updated on 02/Nov/18 Commented by ajfour last updated on 03/Nov/18 $${If}\:{both}\:{coloured}\:{regions}\:{have}\:{the} \\ $$$${same}\:{area},\:{find}\:{locus}\:{of}\:{C}\:{in} \\ $$$${polar}\:{form}\:{or}\:{cartesian}\:{form}. \\ $$$${Take}\:{center}\:{of}\:{rectangle}\:{as}\:{origin}, \\ $$$${and}\:{radius}\:{of}\:{circle}\:{R}.…

1-Find-the-equation-of-hyperbola-with-centre-point-at-1-2-and-coordinates-of-foci-is-6-2-and-4-2-2-If-hyperbola-x-2-2nx-n-2-25-y-2-2my-m-2-16-1-have-a-asympyotes-passes-t

Question Number 112159 by bobhans last updated on 06/Sep/20 $$\left(\mathrm{1}\right)\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{hyperbola}\:\mathrm{with}\: \\ $$$$\mathrm{centre}\:\mathrm{point}\:\mathrm{at}\:\left(\mathrm{1},−\mathrm{2}\right)\:\mathrm{and}\:\mathrm{coordinates} \\ $$$$\mathrm{of}\:\mathrm{foci}\:\mathrm{is}\:\left(\mathrm{6},−\mathrm{2}\right)\:\mathrm{and}\:\left(−\mathrm{4},−\mathrm{2}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{If}\:\mathrm{hyperbola}\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2nx}+\mathrm{n}^{\mathrm{2}} }{\mathrm{25}}−\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{2my}+\mathrm{m}^{\mathrm{2}} }{\mathrm{16}}=\mathrm{1} \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{asympyotes}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{at}\: \\ $$$$\left(\mathrm{0},\mathrm{1}\right),\:\mathrm{then}\:\mathrm{5m}−\mathrm{4n}\:=\: \\…