Menu Close

Category: Coordinate Geometry

1-Find-the-equation-of-hyperbola-with-centre-point-at-1-2-and-coordinates-of-foci-is-6-2-and-4-2-2-If-hyperbola-x-2-2nx-n-2-25-y-2-2my-m-2-16-1-have-a-asympyotes-passes-t

Question Number 112159 by bobhans last updated on 06/Sep/20 $$\left(\mathrm{1}\right)\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{hyperbola}\:\mathrm{with}\: \\ $$$$\mathrm{centre}\:\mathrm{point}\:\mathrm{at}\:\left(\mathrm{1},−\mathrm{2}\right)\:\mathrm{and}\:\mathrm{coordinates} \\ $$$$\mathrm{of}\:\mathrm{foci}\:\mathrm{is}\:\left(\mathrm{6},−\mathrm{2}\right)\:\mathrm{and}\:\left(−\mathrm{4},−\mathrm{2}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{If}\:\mathrm{hyperbola}\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2nx}+\mathrm{n}^{\mathrm{2}} }{\mathrm{25}}−\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{2my}+\mathrm{m}^{\mathrm{2}} }{\mathrm{16}}=\mathrm{1} \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{asympyotes}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{at}\: \\ $$$$\left(\mathrm{0},\mathrm{1}\right),\:\mathrm{then}\:\mathrm{5m}−\mathrm{4n}\:=\: \\…

Question-177152

Question Number 177152 by cortano1 last updated on 01/Oct/22 Answered by Ar Brandon last updated on 01/Oct/22 $${x}+{y}=\mathrm{13}+\sqrt{\mathrm{2}}\:…\mathrm{eqn}\left({i}\right) \\ $$$${y}+{z}=\mathrm{20}−\mathrm{3}\sqrt{\mathrm{2}}\:…\mathrm{eqn}\left({ii}\right) \\ $$$${z}+{x}=\mathrm{17}−\mathrm{10}\sqrt{\mathrm{2}}\:…\mathrm{eqn}\left({iii}\right) \\ $$$$\left({i}\right)−\left({ii}\right)+\left({iii}\right) \\…

P-is-any-point-on-rectangular-xy-c-2-show-that-the-line-joining-P-to-the-centre-and-the-tangent-at-P-are-equally-inclined-to-the-assymptotes-

Question Number 46011 by peter frank last updated on 19/Oct/18 $$\boldsymbol{\mathrm{P}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{on}}\:\:\boldsymbol{\mathrm{rectangular}} \\ $$$$\boldsymbol{\mathrm{xy}}=\boldsymbol{\mathrm{c}}^{\mathrm{2}} \boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{line}}\:\boldsymbol{\mathrm{joining}} \\ $$$$\boldsymbol{\mathrm{P}}\:\mathrm{to}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{the}\: \\ $$$$\mathrm{tangent}\:\mathrm{at}\:\mathrm{P}\:\mathrm{are}\:\mathrm{equally}\:\mathrm{inclined} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{assymptotes} \\ $$ Terms of Service…

the-normal-at-any-point-of-hyperbola-meets-the-axes-at-E-F-find-the-locus-of-the-midpoint-of-EF-

Question Number 46012 by peter frank last updated on 19/Oct/18 $$\mathrm{the}\:\mathrm{normal}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point} \\ $$$$\mathrm{of}\:\mathrm{hyperbola}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{axes} \\ $$$$\mathrm{at}\:\mathrm{E},\mathrm{F}.\mathrm{find}\:\mathrm{the}\:\mathrm{locus}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{EF}. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on…