Menu Close

Category: Coordinate Geometry

The-equations-of-the-sides-AC-BC-and-AB-of-a-right-angled-triangled-with-lengths-a-b-and-c-are-y-7-x-11-and-4x-3y-5-0-respectively-Find-the-equation-of-the-inscribed-circle-of-the-triangle-i

Question Number 175237 by nadovic last updated on 24/Aug/22 $$\mathrm{The}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\:\mathrm{AC},\:\mathrm{BC} \\ $$$$\mathrm{and}\:\mathrm{AB}\:\mathrm{of}\:\:\mathrm{a}\:\mathrm{right}−\mathrm{angled}\:\mathrm{triangled} \\ $$$$\mathrm{with}\:\mathrm{lengths}\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{are}\:{y}\:=\:−\mathrm{7}, \\ $$$${x}=\mathrm{11}\:\mathrm{and}\:\mathrm{4}{x}−\mathrm{3}{y}−\mathrm{5}=\mathrm{0}\:\mathrm{respectively}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed} \\ $$$$\mathrm{circle}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle},\:\mathrm{if}\:\mathrm{its}\:\mathrm{radius}\:{r}, \\ $$$$\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{r}\:=\:\frac{{a}+{b}−{c}}{\mathrm{2}}. \\ $$ Terms…

Question-44088

Question Number 44088 by peter frank last updated on 21/Sep/18 Answered by $@ty@m last updated on 21/Sep/18 $$\left(\boldsymbol{{a}}\right)\:\angle{BCA}=\angle{BCD}\:\left({same}\:{angle}\right) \\ $$$$\angle{ABC}=\angle{BDC}\:\left({right}\:{angle}\right) \\ $$$$\angle{BAC}=\angle{DBC}\:\left({third}\:{angle}\right) \\ $$$$\therefore\bigtriangleup{ABC}\sim\bigtriangleup{BDC} \\…

prove-that-product-of-lengths-of-perpendiculars-from-any-point-of-hyperbola-to-its-asymptotes-is-constant-

Question Number 43921 by peter frank last updated on 17/Sep/18 $${prove}\:{that}\:{product}\:{of}\:{lengths}\:{of}\:{perpendiculars} \\ $$$${from}\:{any}\:{point}\:{of}\:{hyperbola}\:{to}\:{its} \\ $$$${asymptotes}\:{is}\:{constant} \\ $$ Answered by math1967 last updated on 18/Sep/18 $${let}\:{equn}.\:{of}\:{hyperbola}\:{is}\frac{{x}^{\mathrm{2}}…

The-tangent-at-P-to-an-ellipse-meet-diretrix-at-Q-prove-that-the-line-joining-the-corresponding-focus-to-P-and-Q-are-perpendicular-

Question Number 43919 by peter frank last updated on 17/Sep/18 $${The}\:{tangent}\:{at}\:{P}\:{to}\:{an}\:{ellipse}\:{meet}\: \\ $$$${diretrix}\:{at}\:{Q}.{prove}\:{that}\:{the}\:{line}\:{joining} \\ $$$${the}\:{corresponding}\:{focus}\:{to}\:{P}\:{and}\:{Q}\:{are}\:{perpendicular} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

if-tan-x-y-3-4-and-tan-x-y-8-15-show-that-tan-2x-77-36-

Question Number 43875 by peter frank last updated on 16/Sep/18 $${if}\:\:\:\mathrm{tan}\:\left({x}+{y}\right)=\frac{\mathrm{3}}{\mathrm{4}}\:\:{and}\:\mathrm{tan}\left({x}−{y}\right)=\frac{\mathrm{8}}{\mathrm{15}}\: \\ $$$${show}\:{that}\:\:\mathrm{tan}\:\mathrm{2}{x}=\:\frac{\mathrm{77}}{\mathrm{36}} \\ $$ Answered by ajfour last updated on 16/Sep/18 $$\mathrm{tan}\:\left({x}+{y}+{x}−{y}\right)=\frac{\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{8}}{\mathrm{15}}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{5}}} \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{tan}\:\mathrm{2}{x}\:=\:\frac{\mathrm{77}}{\mathrm{36}}\:.…