Menu Close

Category: Coordinate Geometry

A-boy-lying-flat-on-level-ground-sees-a-bird-on-a-tree-and-the-angle-of-Elevation-from-the-boy-to-the-birth-is-42-if-the-boy-is-6m-from-the-tree-find-the-hieght-of-the-tree-if-the-bird-is-at-the-top

Question Number 42698 by Rio Michael last updated on 31/Aug/18 $${A}\:{boy}\:{lying}\:{flat}\:{on}\:{level}\:{ground}\:{sees}\:{a}\:{bird}\:\:{on}\:{a}\:{tree}\:{and}\:{the} \\ $$$${angle}\:{of}\:{Elevation}\:{from}\:{the}\:{boy}\:{to}\:{the}\:{birth}\:{is}\:\mathrm{42}°,{if}\:{the}\:{boy} \\ $$$${is}\:\mathrm{6}{m}\:{from}\:{the}\:{tree}.{find}\:{the}\:{hieght}\:{of}\:{the}\:{tree}\:{if}\:{the}\:{bird} \\ $$$${is}\:{at}\:{the}\:{top}\:{of}\:{the}\:{tree} \\ $$ Answered by math1967 last updated on…

Question-42624

Question Number 42624 by ajfour last updated on 29/Aug/18 Commented by ajfour last updated on 29/Aug/18 $${The}\:{smaller}\:{circle}\:{has}\:{radius}\:\boldsymbol{{r}}. \\ $$$${The}\:{two}\:{parabolas}\:{are}\:{reflection} \\ $$$${of}\:{one}\:{another}\:{in}\:{x}-{axis}. \\ $$$${Equation}\:{of}\:{upper}\:{parabola}\:{is} \\ $$$$\:{y}={ax}^{\mathrm{2}}…

Find-the-greatest-common-divisor-of-1122-and-1001-and-express-the-greatest-common-divisor-d-in-the-form-d-1122x-1001y-Using-the-above-result-solve-the-congruence-equation-37x-11-mod-33-

Question Number 107594 by Rio Michael last updated on 11/Aug/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{divisor}\:\mathrm{of}\:\mathrm{1122}\:\mathrm{and}\:\mathrm{1001}\:\mathrm{and}\: \\ $$$$\mathrm{express}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{divisor}\:{d}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}. \\ $$$$\:\:{d}\:=\:\mathrm{1122}{x}\:+\:\mathrm{1001}{y} \\ $$$$\mathrm{Using}\:\mathrm{the}\:\mathrm{above}\:\mathrm{result}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{congruence}\:\mathrm{equation} \\ $$$$\:\mathrm{37}{x}\:\equiv\:\mathrm{11}\:\left(\mathrm{mod}\:\mathrm{33}\right) \\ $$ Answered by 1549442205PVT last…

Question-173033

Question Number 173033 by cortano1 last updated on 05/Jul/22 Answered by greougoury555 last updated on 05/Jul/22 $$\:{f}\:'\left({x}\right)=\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\:−\frac{\mathrm{4}{k}\:\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:=\mathrm{0} \\ $$$$\:\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)\left(\mathrm{1}−\frac{\mathrm{4}{k}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\right)=\mathrm{0} \\ $$$$\left(°\right)\:\mathrm{tan}\:{x}=\mathrm{1}\Rightarrow{f}\:=\sqrt{\mathrm{2}}\:+\mathrm{2}{k}\: \\ $$$$\left(°°\right)\:\mathrm{1}\:=\frac{\mathrm{4}{k}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)}{\mathrm{sin}\:^{\mathrm{2}}…

Question-173002

Question Number 173002 by Mikenice last updated on 04/Jul/22 Commented by kaivan.ahmadi last updated on 05/Jul/22 $$\mathrm{1}−{tg}^{\mathrm{2}} \theta=\mathrm{1}−\frac{{sin}^{\mathrm{2}} \theta}{{cos}^{\mathrm{2}} \theta}=\frac{{cos}^{\mathrm{2}} \theta−{sin}^{\mathrm{2}} \theta}{{cos}^{\mathrm{2}} \theta}= \\ $$$$\frac{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}}…