Menu Close

Category: Coordinate Geometry

find-the-solution-set-of-equation-x-2-5x-4-x-2-5-x-4-

Question Number 106356 by bobhans last updated on 04/Aug/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{equation}\: \\ $$$$\mid\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{4}\mid\:=\:\mathrm{x}^{\mathrm{2}} −\mathrm{5}\mid\mathrm{x}\mid\:+\:\mathrm{4}\: \\ $$ Commented by bobhans last updated on 05/Aug/20 $$\mathrm{thanm}\:\mathrm{you}\:\mathrm{both} \\…

Question-106029

Question Number 106029 by ajfour last updated on 02/Aug/20 Commented by ajfour last updated on 02/Aug/20 $${Find}\:{coordinates}\:{of}\:{A}\left({x}_{{A}} ,\:{y}_{{A}} \right)\:\:{if} \\ $$$${all}\:{four}\:{quadrants}\:{receive}\:{equal} \\ $$$${area}\:{portions}\:{of}\:\bigtriangleup{ABC}.\:\:\left({x}_{{A}} \geqslant{y}_{{A}} \right)…

Question-171512

Question Number 171512 by infinityaction last updated on 16/Jun/22 Answered by som(math1967) last updated on 17/Jun/22 $$\overset{\frown} {{DL}}=\overset{\frown} {{LM}}=\overset{\frown} {{MB}} \\ $$$$\therefore\:\angle{DAL}=\angle{LAM}=\angle{MAB}=\mathrm{30} \\ $$$${ar}.\bigtriangleup{ALM}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{8}{sin}\mathrm{30}×\mathrm{8}=\mathrm{16}{cm}^{\mathrm{2}} \\…

Find-the-equation-of-a-circle-which-touches-the-line-x-3y-13-0-and-passes-through-the-points-6-3-and-4-1-

Question Number 170890 by nadovic last updated on 02/Jun/22 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{which} \\ $$$$\mathrm{touches}\:\mathrm{the}\:\mathrm{line}\:{x}−\mathrm{3}{y}+\mathrm{13}\:=\:\mathrm{0}\: \\ $$$$\mathrm{and}\:\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{points}\:\left(\mathrm{6},\:\mathrm{3}\right) \\ $$$$\mathrm{and}\:\left(\mathrm{4},\:−\mathrm{1}\right). \\ $$ Answered by aleks041103 last updated on 02/Jun/22…

Question-105001

Question Number 105001 by ajfour last updated on 25/Jul/20 Commented by ajfour last updated on 25/Jul/20 $${If}\:{both}\:{circles}\:{have}\:{unit}\:{radius},\:{and} \\ $$$${regions}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5}\:{have}\:{equal}\:{areas}, \\ $$$${find}\:{eq}.\:{of}\:{both}\:{circles}. \\ $$ Answered by…