Menu Close

Category: Coordinate Geometry

Find-the-max-area-of-le-witth-sides-a-b-c-such-as-0-lt-a-1-1-b-2-2-c-3-is-a-1-b-1-2-c-2-d-3-2-

Question Number 164437 by SLVR last updated on 17/Jan/22 $${Find}\:{the}\:{max}.\:{area}\:{of}\:\Delta{le} \\ $$$${witth}\:{sides}\:{a},{b},{c}\:{such}\:{as} \\ $$$$\mathrm{0}<{a}\leqslant\mathrm{1};\mathrm{1}\leqslant{b}\leqslant\mathrm{2};\mathrm{2}\leqslant{c}\leqslant\mathrm{3}\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\:\:\:\:\:\:\:\:{b}\right)\mathrm{1}/\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:{c}\right)\mathrm{2}\:\:\:\:\:\:\:\:{d}\right)\mathrm{3}/\mathrm{2} \\ $$ Answered by mahdipoor last updated on 17/Jan/22…

Currently-working-on-enhancing-this-app-to-draw-shapes-So-posting-a-math-problem-realted-to-drawing-Ref-Frame1-X-Y-Frame-2-Axis-translated-by-h-k-and-rotated-about-point-u-v-Consider-a-po

Question Number 98728 by Tinku Tara last updated on 15/Jun/20 $$\mathrm{Currently}\:\mathrm{working}\:\mathrm{on}\:\mathrm{enhancing} \\ $$$$\mathrm{this}\:\mathrm{app}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{shapes}. \\ $$$$\mathrm{So}\:\mathrm{posting}\:\mathrm{a}\:\:\mathrm{math}\:\mathrm{problem}\:\mathrm{realted} \\ $$$$\mathrm{to}\:\mathrm{drawing}\bar {.} \\ $$$$\mathrm{Ref}.\:\mathrm{Frame1}\:\mathrm{X}-\mathrm{Y} \\ $$$$\mathrm{Frame}\:\mathrm{2}: \\ $$$$\mathrm{Axis}\:\mathrm{translated}\:\mathrm{by}\:\left({h},{k}\right)\:\mathrm{and} \\…

let-A-3-4-and-B-is-a-variable-point-on-the-line-x-6-if-AB-lt-4-then-the-number-of-position-of-B-with-integral-coordinates-is-please-help-

Question Number 98598 by MWSuSon last updated on 15/Jun/20 $$\boldsymbol{{let}}\:\boldsymbol{{A}}=\left(\mathrm{3},\mathrm{4}\right)\:\boldsymbol{{and}}\:\boldsymbol{{B}}\:\boldsymbol{{is}}\:\boldsymbol{{a}}\:\boldsymbol{{variable}}\:\boldsymbol{{point}} \\ $$$$\boldsymbol{{on}}\:\boldsymbol{{the}}\:\boldsymbol{{line}}\:\mid\boldsymbol{{x}}\mid=\mathrm{6}.\:\boldsymbol{{if}}\:\overline {\boldsymbol{{AB}}}<\mathrm{4},\:\boldsymbol{{then}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{number}}\:\boldsymbol{{of}}\:\boldsymbol{{position}}\:\boldsymbol{{of}}\:\boldsymbol{{B}}\:\boldsymbol{{with}}\:\boldsymbol{{integral}} \\ $$$$\boldsymbol{{coordinates}}\:\boldsymbol{{is}}? \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{help}}! \\ $$ Commented by bobhans last…

If-4a-2-5b-2-6a-1-0-and-the-line-ax-by-1-0-touches-a-fixed-circle-then-the-correct-statement-is-1-centre-of-circle-is-at-3-0-2-radius-of-circle-is-3-3-circle-passes-through-1-0-4-none

Question Number 32679 by rahul 19 last updated on 31/Mar/18 $${If}\:\mathrm{4}{a}^{\mathrm{2}} −\mathrm{5}{b}^{\mathrm{2}} +\mathrm{6}{a}+\mathrm{1}=\mathrm{0}\:{and}\:{the}\:{line} \\ $$$${ax}+{by}+\mathrm{1}=\mathrm{0}\:{touches}\:{a}\:{fixed}\:{circle} \\ $$$${then}\:{the}\:{correct}\:{statement}\:{is}\:: \\ $$$$\left.\mathrm{1}\right)\:{centre}\:{of}\:{circle}\:{is}\:{at}\:\left(\mathrm{3},\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{radius}\:{of}\:{circle}\:{is}\:\sqrt{\mathrm{3}}. \\ $$$$\left.\mathrm{3}\right)\:{circle}\:{passes}\:{through}\:\left(\mathrm{1},\mathrm{0}\right). \\ $$$$\left.\mathrm{4}\right)\:{none}\:{of}\:{these}.…

developp-at-fourier-serie-g-x-2-3-sin-2-x-

Question Number 98185 by abdomathmax last updated on 12/Jun/20 $$\mathrm{developp}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\frac{\mathrm{2}}{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$ Answered by mathmax by abdo last updated on 12/Jun/20 $$\mathrm{g}\left(\mathrm{x}\right)\:=\frac{\mathrm{2}}{\mathrm{3}+\mathrm{sin}^{\mathrm{2}}…

Question-32508

Question Number 32508 by Tinkutara last updated on 26/Mar/18 Answered by MJS last updated on 27/Mar/18 $$\mathrm{there}\:\mathrm{are}\:\mathrm{2}\:\mathrm{tangents}\:\mathrm{of}\:\mathrm{different} \\ $$$$\mathrm{lengths}\:\mathrm{but}\:\mathrm{none}\:\mathrm{of}\:\mathrm{these}\:\mathrm{answers} \\ $$$$\mathrm{fit}\:\mathrm{any}\:\mathrm{of}\:\mathrm{them}… \\ $$$$\mathrm{ellipse}:\:{y}=\pm\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }…

x-2y-3-2-3x-4y-1-2-100-what-is-the-area-of-the-ellipse-

Question Number 32501 by riza kesk last updated on 26/Mar/18 $$\left(\mathrm{x}−\mathrm{2y}+\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{3x}+\mathrm{4y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{100} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ellipse}? \\ $$ Answered by MJS last updated on 27/Mar/18 $$\mathrm{the}\:\mathrm{center}\:\mathrm{of}…