Question Number 29960 by rahul 19 last updated on 14/Feb/18 Answered by ajfour last updated on 15/Feb/18 $$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\Rightarrow\:\:\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{y}}{{b}^{\mathrm{2}} }\left(\frac{{dy}}{{dx}}\right)=\mathrm{0} \\…
Question Number 161015 by mr W last updated on 10/Dec/21 Commented by mr W last updated on 11/Dec/21 $${The}\:{distances}\:{from}\:{the}\:{orthocenter} \\ $$$${to}\:{the}\:{vertexes}\:{of}\:{a}\:{triangle}\:{are} \\ $$$$\boldsymbol{{p}},\:\boldsymbol{{q}},\:\boldsymbol{{r}}\:{respectively}.\:{Find}\:{the}\:{side} \\ $$$${lengthes}\:{of}\:{the}\:{triangle}.…
Question Number 95464 by i jagooll last updated on 25/May/20 Commented by i jagooll last updated on 25/May/20 $$\mathrm{my}\:\mathrm{son}'\mathrm{s}\:\mathrm{exam}\:\mathrm{questions} \\ $$ Commented by john santu…
Question Number 95341 by AshrafNejem last updated on 24/May/20 $$\left.\mathrm{Q}\right)\:\mathrm{A}\:\mathrm{light}\:\mathrm{falls}\:\mathrm{on}\:\mathrm{two}\:\mathrm{slits}\:\mathrm{0}.\mathrm{15}\:{mm}\:\mathrm{apart}.\mathrm{An}\:\mathrm{interference}\:\mathrm{pattern} \\ $$$$\mathrm{is}\:\mathrm{produced}\:\mathrm{on}\:\mathrm{a}\:\mathrm{screen}\:\mathrm{60}\:{cm}\:\mathrm{from}\:\mathrm{the}\:\mathrm{slits},\:\mathrm{if}\: \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{second}\:\mathrm{and}\:\mathrm{the}\:\mathrm{fifth}\: \\ $$$$\mathrm{bright}\:\mathrm{bands}\:\left(\mathrm{frings}\right)\:\mathrm{is}\:\mathrm{0}.\mathrm{7}\:{cm}.\:\mathrm{Calculate}\:\mathrm{the}\: \\ $$$$\mathrm{avelength}\:\mathrm{of}\:\mathrm{the}\:\mathrm{used}\:\mathrm{light}. \\ $$$$\boldsymbol{{solution}}: \\ $$$$\Delta{y}_{{n}=\mathrm{2}\rightarrow\mathrm{n}=\mathrm{5}} =\mathrm{0}.\mathrm{7}\Rightarrow\Delta{y}=\mathrm{0}.\mathrm{7}/\mathrm{3}=\mathrm{0}.\mathrm{233}×\mathrm{10}^{−\mathrm{2}} \:{m} \\…
Question Number 29770 by gyugfeet last updated on 12/Feb/18 $${find}\:{the}\:{equation}\:{of}\:{a}\:{pair}\:{of}\:{straight}\:{lines}\:{represented}\:{by}\:{given}\:{equation}\:\mathrm{2}{x}^{\mathrm{2}\:} −\mathrm{5}{xy}−\mathrm{3}{y}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{19}{y}−\mathrm{20}=\mathrm{0} \\ $$ Answered by ajfour last updated on 12/Feb/18 $${let}\:{eq}.\:{of}\:{pair}\:{be} \\ $$$$−\mathrm{3}\left({y}−{m}_{\mathrm{1}} {x}−{c}_{\mathrm{1}}…
Question Number 29753 by Victor31926 last updated on 11/Feb/18 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 29728 by rahul 19 last updated on 11/Feb/18 Commented by 803jaideep@gmail.com last updated on 11/Feb/18 $$\mathrm{i}\:\mathrm{dnt}\:\mathrm{know}\:\mathrm{exactly}\:\mathrm{but}\:\mathrm{i}\:\mathrm{think}\: \\ $$$$\mathrm{tangents}\:\mathrm{at}\:\mathrm{end}\:\mathrm{of}\:\mathrm{latus}\:\mathrm{rectum}\: \\ $$$$\mathrm{can}\:\mathrm{form}\:\mathrm{square} \\ $$ Commented…
Question Number 95206 by hardylanes last updated on 23/May/20 $${find}\:{the}\:{equation}\:{of}\:{the}\:{straight}\:{line}\:{which} \\ $$$${passes}\:{through}\:{the}\:{point}\:{of}\:{intersertion}\:{of} \\ $$$${the}\:{lines}\:\mathrm{4}{x}+\mathrm{3}{y}+\mathrm{19}=\mathrm{0}\:{and}\:\mathrm{12}{x}−\mathrm{5}{y}+\mathrm{3}=\mathrm{0} \\ $$$${and}\:{has}\:{a}\:{y\_intercept}\:{of}\:\mathrm{2} \\ $$ Commented by PRITHWISH SEN 2 last updated…
Question Number 160701 by tounghoungko last updated on 05/Dec/21 Answered by som(math1967) last updated on 05/Dec/21 $$\boldsymbol{{ABCD}}\:\boldsymbol{{cyclic}}\:\:\left[\angle{ADC}+\angle{ABD}=\mathrm{180}\right] \\ $$$$\therefore\angle{BDC}=\angle{BAC}=\mathrm{45}\:\left[{subtend}\:{samesegment}\right] \\ $$$$\angle{BCD}=\mathrm{180}−\mathrm{75}=\mathrm{105} \\ $$$${BD}={radius}\:{of}\:{quater}\:{circle} \\ $$$${from}\:\bigtriangleup{BCD}…
Question Number 95145 by i jagooll last updated on 23/May/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{14}}\:+\:\frac{\mathrm{1}}{\mathrm{35}}\:+\frac{\mathrm{1}}{\mathrm{65}}\:+\:\frac{\mathrm{1}}{\mathrm{104}}\:+\:…\:? \\ $$ Answered by bobhans last updated on 23/May/20 $$\mathrm{S}\:=\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}}{\left(\mathrm{3n}+\mathrm{1}\right)\left(\mathrm{3n}+\mathrm{2}\right)}\right)\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\underset{{x}\rightarrow\infty}…