Menu Close

Category: Coordinate Geometry

Question-29728

Question Number 29728 by rahul 19 last updated on 11/Feb/18 Commented by 803jaideep@gmail.com last updated on 11/Feb/18 $$\mathrm{i}\:\mathrm{dnt}\:\mathrm{know}\:\mathrm{exactly}\:\mathrm{but}\:\mathrm{i}\:\mathrm{think}\: \\ $$$$\mathrm{tangents}\:\mathrm{at}\:\mathrm{end}\:\mathrm{of}\:\mathrm{latus}\:\mathrm{rectum}\: \\ $$$$\mathrm{can}\:\mathrm{form}\:\mathrm{square} \\ $$ Commented…

find-the-equation-of-the-straight-line-which-passes-through-the-point-of-intersertion-of-the-lines-4x-3y-19-0-and-12x-5y-3-0-and-has-a-y-intercept-of-2-

Question Number 95206 by hardylanes last updated on 23/May/20 $${find}\:{the}\:{equation}\:{of}\:{the}\:{straight}\:{line}\:{which} \\ $$$${passes}\:{through}\:{the}\:{point}\:{of}\:{intersertion}\:{of} \\ $$$${the}\:{lines}\:\mathrm{4}{x}+\mathrm{3}{y}+\mathrm{19}=\mathrm{0}\:{and}\:\mathrm{12}{x}−\mathrm{5}{y}+\mathrm{3}=\mathrm{0} \\ $$$${and}\:{has}\:{a}\:{y\_intercept}\:{of}\:\mathrm{2} \\ $$ Commented by PRITHWISH SEN 2 last updated…

Question-160701

Question Number 160701 by tounghoungko last updated on 05/Dec/21 Answered by som(math1967) last updated on 05/Dec/21 $$\boldsymbol{{ABCD}}\:\boldsymbol{{cyclic}}\:\:\left[\angle{ADC}+\angle{ABD}=\mathrm{180}\right] \\ $$$$\therefore\angle{BDC}=\angle{BAC}=\mathrm{45}\:\left[{subtend}\:{samesegment}\right] \\ $$$$\angle{BCD}=\mathrm{180}−\mathrm{75}=\mathrm{105} \\ $$$${BD}={radius}\:{of}\:{quater}\:{circle} \\ $$$${from}\:\bigtriangleup{BCD}…

what-is-the-sum-of-1-14-1-35-1-65-1-104-

Question Number 95145 by i jagooll last updated on 23/May/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{14}}\:+\:\frac{\mathrm{1}}{\mathrm{35}}\:+\frac{\mathrm{1}}{\mathrm{65}}\:+\:\frac{\mathrm{1}}{\mathrm{104}}\:+\:…\:? \\ $$ Answered by bobhans last updated on 23/May/20 $$\mathrm{S}\:=\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}}{\left(\mathrm{3n}+\mathrm{1}\right)\left(\mathrm{3n}+\mathrm{2}\right)}\right)\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\underset{{x}\rightarrow\infty}…

Question-160654

Question Number 160654 by Avijit007 last updated on 04/Dec/21 Answered by som(math1967) last updated on 04/Dec/21 $${let}\:{radius}\:{of}\:{semicircle}\:{rcm} \\ $$$$\therefore\:\boldsymbol{{r}}^{\mathrm{2}} =\left(\boldsymbol{{r}}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{2}\boldsymbol{{r}}−\mathrm{1}=\mathrm{9} \\ $$$$\therefore\boldsymbol{{r}}=\mathrm{5}\boldsymbol{{cm}}…

Question-160544

Question Number 160544 by cortano last updated on 01/Dec/21 Commented by bobhans last updated on 01/Dec/21 $$\:\mathrm{A}=\sqrt{\mathrm{11}×\mathrm{10}×\mathrm{7}×\mathrm{8}}\:=\:\mathrm{4}\sqrt{\mathrm{385}} \\ $$$$\:\mathrm{R}=\frac{\sqrt{\mathrm{157}×\mathrm{166}×\mathrm{158}}}{\mathrm{16}\sqrt{\mathrm{385}}}\:=\:\frac{\sqrt{\mathrm{1029449}}}{\mathrm{8}\sqrt{\mathrm{385}}} \\ $$$$\:\mathrm{S}_{\mathrm{circle}} =\:\frac{\mathrm{1029449}\pi}{\mathrm{24640}} \\ $$ Commented…