Question Number 88456 by ajfour last updated on 10/Apr/20 Commented by ajfour last updated on 11/Apr/20 $${Find}\:{s}\:{in}\:{terms}\:\:\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}. \\ $$ Commented by Tony Lin last updated…
Question Number 88430 by ajfour last updated on 10/Apr/20 Commented by ajfour last updated on 10/Apr/20 $${Q}.\mathrm{88352}\:\left({My}\:{answer}\:{to}\:{the}\:{question}\right) \\ $$$${parabola}:\:\:{y}={cx}^{\mathrm{2}} +{b} \\ $$$${ellipse}:\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}}…
Question Number 153912 by cherokeesay last updated on 12/Sep/21 Answered by mr W last updated on 12/Sep/21 Commented by mr W last updated on 12/Sep/21…
Question Number 88352 by ajfour last updated on 10/Apr/20 Commented by ajfour last updated on 10/Apr/20 $${Eq}.\:{of}\:{ellipse}:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{25}}+\frac{{y}^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1} \\ $$$${eq}.\:{of}\:{parabola}:\:\:{y}=\frac{\mathrm{6}{x}^{\mathrm{2}} }{\mathrm{25}}+\mathrm{3} \\ $$$${Find}\:{radius}\:{of}\:{shown}\:{circle}. \\…
Question Number 88310 by ajfour last updated on 09/Apr/20 Commented by ajfour last updated on 09/Apr/20 $${Q}.\mathrm{88272}\:\left({revisited}\right) \\ $$ Answered by ajfour last updated on…
Question Number 88240 by ajfour last updated on 09/Apr/20 Commented by ajfour last updated on 09/Apr/20 $${Find}\:{radius}\:{of}\:{semicircle}\:{in} \\ $$$${terms}\:{of}\:{a}. \\ $$ Commented by ajfour last…
Question Number 88245 by jagoll last updated on 09/Apr/20 Answered by john santu last updated on 09/Apr/20 $$\Rightarrow\frac{\Delta}{\mathrm{4}}\:=\:\mathrm{0}\:,\:\left[\:\Delta\:=\:{discriminant}\:\right] \\ $$$$\left({ab}+{bc}\right)−\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\:=\:\mathrm{0} \\…
Question Number 153757 by liberty last updated on 10/Sep/21 Commented by mr W last updated on 11/Sep/21 $${S}_{\mathrm{1}} ={S}_{\mathrm{2}} =\frac{\mathrm{85}}{\mathrm{4}} \\ $$ Answered by mr…
Question Number 88212 by 4*3 last updated on 09/Apr/20 $$\Sigma\left[\left(\mathrm{e}^{\mathrm{s}^{\mathrm{e}^{\mathrm{s}^{} } } } −\mathrm{x}\right)^{\mathrm{r}} \right]^{\left(\mathrm{s}+\mathrm{5}\right)\frac{\mathrm{sin}\:{x}}{\mathrm{tan}\:{y}}} \:={i} \\ $$$${s}=\mathrm{5} \\ $$$$\mathrm{r}=\mathrm{2} \\ $$$${x}=\mathrm{90}° \\ $$$$ \\…
Question Number 22483 by Tinkutara last updated on 19/Oct/17 $$\mathrm{Predict}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{Cs}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{density}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{elements} \\ $$$$\mathrm{K}\:\mathrm{0}.\mathrm{86}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}} \:\:\:\:\:\:\:\:\mathrm{Ca}\:\mathrm{1}.\mathrm{548}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}} \\ $$$$\mathrm{Sc}\:\mathrm{2}.\mathrm{991}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}} \:\:\:\:\:\mathrm{Rb}\:\mathrm{1}.\mathrm{532}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}} \\ $$$$\mathrm{Sr}\:\mathrm{2}.\mathrm{68}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}} \:\:\:\:\:\:\:\:\mathrm{Y}\:\mathrm{4}.\mathrm{34}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}} \\ $$$$\mathrm{Cs}\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Ba}\:\mathrm{3}.\mathrm{51}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{La}\:\mathrm{6}.\mathrm{16}\:\mathrm{g}/\mathrm{cm}^{\mathrm{3}}…