Question Number 82919 by miswantospd2@gmail.com last updated on 25/Feb/20 $${bangun}\:{datar} \\ $$ Commented by john santu last updated on 26/Feb/20 $$??????? \\ $$ Commented by…
Question Number 16789 by ajfour last updated on 26/Jun/17 Commented by ajfour last updated on 26/Jun/17 $$\:\mathrm{solution}\:\mathrm{to}\:\mathrm{Q}.\mathrm{16065} \\ $$$$\mathrm{find}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{M}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{Area}\left(\bigtriangleup\mathrm{MAB}\right)=\mathrm{2Area}\left(\bigtriangleup\mathrm{MCD}\right). \\ $$ Answered by…
Question Number 147539 by alcohol last updated on 21/Jul/21 $${show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{5}} }{dx}\:\leqslant\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}{dx}\:\leqslant\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} } \\ $$ Answered by…
Question Number 81975 by TANMAY PANACEA last updated on 17/Feb/20 Commented by TANMAY PANACEA last updated on 17/Feb/20 $${thank}\:{you}\:{sir} \\ $$ Commented by mr W…
Question Number 81854 by ajfour last updated on 16/Feb/20 Commented by ajfour last updated on 16/Feb/20 $${Find}\:{eq}.\:{of}\:{parabola}\:{using} \\ $$$${a},{b},{c}\:\:{in}\:{the}\:{form}\:{y}={q}−{x}^{\mathrm{2}} . \\ $$ Answered by mr…
Question Number 147381 by puissant last updated on 20/Jul/21 $${On}\:{pose}\:{H}_{{n}} \left(\alpha\right)=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{sin}\left(\frac{\alpha}{\mathrm{2}{n}}+\frac{{k}\pi}{{n}}\right) \\ $$$$\left.{a}\right)\:{montrer}\:{que}\:\forall\alpha\neq\mathrm{0},\: \\ $$$$\mathrm{2}^{{n}−\mathrm{1}} {H}_{{n}} \left(\alpha\right)=\frac{{sin}\left(\frac{\alpha}{\mathrm{2}}\right)}{{sin}\left(\frac{\alpha}{\mathrm{2}{n}}\right)} \\ $$$$\left.{b}\right)\:{Calculer}\:{lim}_{\alpha\rightarrow\mathrm{0}} \:{H}_{{n}} \left(\alpha\right) \\ $$$$\left.{c}\right)\:{D}\acute…
Question Number 81734 by jagoll last updated on 15/Feb/20 $${The}\:{vertices}\:{of}\:{quadrilateral} \\ $$$${lie}\:{on}\:{the}\:{graph}\:{of}\:{y}\:=\:{lnx}\:{and}\: \\ $$$${the}\:{x}−{coordinates}\:{of}\:{these}\:{vertices} \\ $$$${are}\:{consecutive}\:{positive}\:{integer} \\ $$$$.\:{The}\:{area}\:{of}\:{the}\:{quadrilateral} \\ $$$${is}\:{ln}\:\left(\frac{\mathrm{91}}{\mathrm{90}}\right).\:{what}\:{is}\:{the}\:{x}−{coordinate} \\ $$$${of}\:{the}\:{leftmost}\:{vertex} \\ $$ Commented…
Question Number 15993 by ajfour last updated on 16/Jun/17 Commented by ajfour last updated on 16/Jun/17 $$\:{answer}\:{to}\:{Q}.\mathrm{15969}\: \\ $$ Answered by ajfour last updated on…
Question Number 81485 by ajfour last updated on 13/Feb/20 Commented by ajfour last updated on 13/Feb/20 $${If}\:{area}\:{of}\:{region}\:{A}\:{is}\:{equal}\:{to} \\ $$$${that}\:{of}\:{B},\:{find}\:{eq}.\:{of}\:{parabola}. \\ $$ Commented by jagoll last…
Question Number 81470 by ajfour last updated on 13/Feb/20 $${Prove}\:{that}\:{the}\:{locus}\:{of}\:{the}\:{point} \\ $$$${of}\:{intersection}\:{of}\:{perpendicular} \\ $$$${tangents}\:{to}\:{an}\:{ellipse}\:{is}\:{another} \\ $$$${ellipse}. \\ $$ Answered by mr W last updated on…