Menu Close

Category: Coordinate Geometry

Question-16789

Question Number 16789 by ajfour last updated on 26/Jun/17 Commented by ajfour last updated on 26/Jun/17 $$\:\mathrm{solution}\:\mathrm{to}\:\mathrm{Q}.\mathrm{16065} \\ $$$$\mathrm{find}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{M}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{Area}\left(\bigtriangleup\mathrm{MAB}\right)=\mathrm{2Area}\left(\bigtriangleup\mathrm{MCD}\right). \\ $$ Answered by…

show-that-1-2-1-2-1-x-5-dx-1-2-1-x-4-1-dx-1-2-1-x-4-

Question Number 147539 by alcohol last updated on 21/Jul/21 $${show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{5}} }{dx}\:\leqslant\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}{dx}\:\leqslant\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} } \\ $$ Answered by…

On-pose-H-n-k-1-n-1-sin-2n-kpi-n-a-montrer-que-0-2-n-1-H-n-sin-2-sin-2n-b-Calculer-lim-0-H-n-c-De-duire-que-2-sin-pi-n-sin-2pi-

Question Number 147381 by puissant last updated on 20/Jul/21 $${On}\:{pose}\:{H}_{{n}} \left(\alpha\right)=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{sin}\left(\frac{\alpha}{\mathrm{2}{n}}+\frac{{k}\pi}{{n}}\right) \\ $$$$\left.{a}\right)\:{montrer}\:{que}\:\forall\alpha\neq\mathrm{0},\: \\ $$$$\mathrm{2}^{{n}−\mathrm{1}} {H}_{{n}} \left(\alpha\right)=\frac{{sin}\left(\frac{\alpha}{\mathrm{2}}\right)}{{sin}\left(\frac{\alpha}{\mathrm{2}{n}}\right)} \\ $$$$\left.{b}\right)\:{Calculer}\:{lim}_{\alpha\rightarrow\mathrm{0}} \:{H}_{{n}} \left(\alpha\right) \\ $$$$\left.{c}\right)\:{D}\acute…

The-vertices-of-quadrilateral-lie-on-the-graph-of-y-lnx-and-the-x-coordinates-of-these-vertices-are-consecutive-positive-integer-The-area-of-the-quadrilateral-is-ln-91-90-what-is-the-x-c

Question Number 81734 by jagoll last updated on 15/Feb/20 $${The}\:{vertices}\:{of}\:{quadrilateral} \\ $$$${lie}\:{on}\:{the}\:{graph}\:{of}\:{y}\:=\:{lnx}\:{and}\: \\ $$$${the}\:{x}−{coordinates}\:{of}\:{these}\:{vertices} \\ $$$${are}\:{consecutive}\:{positive}\:{integer} \\ $$$$.\:{The}\:{area}\:{of}\:{the}\:{quadrilateral} \\ $$$${is}\:{ln}\:\left(\frac{\mathrm{91}}{\mathrm{90}}\right).\:{what}\:{is}\:{the}\:{x}−{coordinate} \\ $$$${of}\:{the}\:{leftmost}\:{vertex} \\ $$ Commented…