Menu Close

Category: Coordinate Geometry

Find-the-equation-and-radius-of-the-circumcircle-of-the-triangle-formed-by-the-three-line-2y-9x-26-0-9y-2x-32-0-11y-7x-27-0-

Question Number 15868 by tawa tawa last updated on 14/Jun/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{formed}\:\mathrm{by}\: \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{line}: \\ $$$$\mathrm{2y}\:−\:\mathrm{9x}\:+\:\mathrm{26}\:=\:\mathrm{0} \\ $$$$\mathrm{9y}\:+\:\mathrm{2x}\:+\:\mathrm{32}\:=\:\mathrm{0} \\ $$$$\mathrm{11y}\:−\:\mathrm{7x}\:−\:\mathrm{27}\:=\:\mathrm{0} \\ $$ Answered by Tinkutara last…

From-a-point-A-on-the-circum-ference-of-a-circle-of-radius-r-a-perpendicular-AF-is-dropped-on-a-tangent-to-the-circle-at-P-Find-the-maximum-possible-area-of-APF-

Question Number 15736 by ajfour last updated on 13/Jun/17 $${From}\:{a}\:{point}\:{A}\:{on}\:{the}\:{circum}- \\ $$$${ference}\:{of}\:{a}\:{circle}\:{of}\:{radius}\:\boldsymbol{{r}},\:{a} \\ $$$${perpendicular}\:{AF}\:\:{is}\:{dropped}\:{on} \\ $$$${a}\:{tangent}\:{to}\:{the}\:{circle}\:{at}\:{P}. \\ $$$${Find}\:{the}\:\:{maximum}\:{possible}\: \\ $$$${area}\:{of}\:\Delta{APF}\:. \\ $$ Answered by mrW1…

Prove-that-0-tln-sint-dt-2-2-ln-2-

Question Number 146775 by Willson last updated on 15/Jul/21 $$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\:\:\underset{\:\mathrm{0}} {\int}^{\:\boldsymbol{\pi}} \boldsymbol{{tln}}\left(\boldsymbol{{sint}}\right)\boldsymbol{{dt}}=\:−\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{2}}\boldsymbol{{ln}}\left(\mathrm{2}\right) \\ $$ Answered by ArielVyny last updated on 15/Jul/21 $$\int_{\mathrm{0}}…

find-the-coordinate-of-the-line-prese-nted-with-line-2x-3y-7-0-which-is-equadistance-from-points-4-8-and-7-1-

Question Number 80869 by MASANJAJ last updated on 07/Feb/20 $${find}\:{the}\:{coordinate}\:{of}\:{the}\:{line}\:{prese} \\ $$$${nted}\:{with}\:{line}\:\mathrm{2}{x}−\mathrm{3}{y}+\mathrm{7}=\mathrm{0}.{which}\:{is} \\ $$$${equadistance}\:{from}\:{points}\:\left(−\mathrm{4},\mathrm{8}\right)\:{and}\: \\ $$$$\left(\mathrm{7},\mathrm{1}\right) \\ $$ Commented by ajfour last updated on 07/Feb/20…