Question Number 77854 by jagoll last updated on 11/Jan/20 $${a}\:{circle}\: \\ $$$${offends}\:{the}\:{y}\:{axis}\:{at}\:{point}\left(\mathrm{0},{b}\right)\: \\ $$$${and}\:{through}\:{the}\:{intersection} \\ $$$${of}\:{the}\:{curve}\:{y}\:=\:{x}\:−\mathrm{2}\sqrt{{x}}+\frac{\mathrm{1}}{\mathrm{4}}.\: \\ $$$${value}\:{of}\:{b}\:=\:? \\ $$ Commented by john santu last…
Question Number 12246 by tawa last updated on 16/Apr/17 $$\mathrm{Let}\:\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{be}\:\mathrm{an}\:\mathrm{ininitely}\:\mathrm{differentiable}\:\mathrm{function}\:,\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{g}\left(\mathrm{2x}\:+\:\mathrm{6}\right)\:=\:\mathrm{g}^{'} \left(\mathrm{3x}\:−\:\mathrm{1}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}. \\ $$$$\mathrm{given}\:\mathrm{that}\:\:\mathrm{g}\left(\frac{\mathrm{44}}{\mathrm{3}}\right)\:=\:\mathrm{33}\:.\:\:\mathrm{find}\:\:\:\mathrm{g}''\left(\mathrm{8}\right) \\ $$ Answered by mrW1 last updated on 16/Apr/17 $${u}=\mathrm{3}{x}−\mathrm{1}\Rightarrow{x}=\frac{{u}+\mathrm{1}}{\mathrm{3}}\Rightarrow\mathrm{2}{x}+\mathrm{6}=\mathrm{2}×\frac{{u}+\mathrm{1}}{\mathrm{3}}+\mathrm{6}=\frac{\mathrm{2}{u}+\mathrm{20}}{\mathrm{3}}…
Question Number 12127 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/Apr/17 Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17 $${in}\:{triangle}:{ABC}\:{we}\:{have}: \\ $$$${AB}={m},{AC}={n},{AD}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}, \\ $$$${BD}\bot{DC},\measuredangle{BDA}=\measuredangle{ADC}. \\ $$$${find}:{BD}\:{and}\:{DC}\:{in}\:{term}\:{of}:\:{m},{n}. \\ $$…
Question Number 11695 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 30/Mar/17 Commented by mrW1 last updated on 30/Mar/17 $${there}\:{is}\:{no}\:{max}.\:{or}\:{min}.\:{there}\:{is}\:{only} \\ $$$${a}\:{local}\:{max}. \\ $$ Commented by mrW1 last…
Question Number 11613 by Nayon last updated on 29/Mar/17 $${Can}\:{you}\:{evaluate}\:{the}\:{equation}\:{of} \\ $$$${a}\:{Ellipse}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11607 by Joel576 last updated on 29/Mar/17 $$\mathrm{A}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{equation}\:{y}\:=\:\frac{{x}^{\mathrm{2}} }{{k}}\:−\:\mathrm{5}\:\mathrm{intersects} \\ $$$$\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{25}\:\mathrm{at}\:\mathrm{exactly}\:\mathrm{3}\:\mathrm{points}\:{A},\:{B},\:{C} \\ $$$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{such}\:\mathrm{positive}\:\mathrm{integers}\:{k}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta{ABC}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer} \\ $$ Answered by mrW1 last…
Question Number 11591 by agni5 last updated on 28/Mar/17 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{intercept}\:\mathrm{of}\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1}\:\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{x}-\mathrm{axis}\:? \\ $$ Answered by ajfour last updated on 28/Mar/17…
Question Number 11473 by tawa last updated on 26/Mar/17 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{x}\:+\:\mathrm{1}\:,\:\mathrm{between}\:\mathrm{x}\:=\:−\:\mathrm{1}\:\mathrm{and}\:\mathrm{x}\:=\:\mathrm{2} \\ $$$$\mathrm{lies}\:\mathrm{entirely}\:\mathrm{above}\:\mathrm{the}\:\mathrm{x}\:−\:\mathrm{axis} \\ $$ Commented by prakash jain last updated on 28/Mar/17 $${y}={x}^{\mathrm{3}}…
Question Number 11394 by agni5 last updated on 23/Mar/17 $$\mathrm{Find}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hyperbolas}\:\mathrm{that}\: \\ $$$$\mathrm{intersect}\:\mathrm{3x}^{\mathrm{2}} −\mathrm{4y}^{\mathrm{2}} =\mathrm{5xy}\:\mathrm{and}\: \\ $$$$\mathrm{3y}^{\mathrm{2}} −\mathrm{4x}^{\mathrm{2}} =\mathrm{2x}+\mathrm{5}. \\ $$ Terms of Service Privacy Policy…
Question Number 142447 by ajfour last updated on 31/May/21 Commented by ajfour last updated on 31/May/21 $${Find}\:{ellipse}\:{perimeter}. \\ $$ Answered by Dwaipayan Shikari last updated…