Question Number 9731 by tawakalitu last updated on 29/Dec/16 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hypebola}\:\mathrm{whose} \\ $$$$\mathrm{equation}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}. \\ $$$$\frac{\mathrm{x}}{\mathrm{24}}\:−\:\frac{\mathrm{y}}{\mathrm{29}}\:=\:\mathrm{1} \\ $$ Commented by geovane10math last updated on 29/Dec/16 $$\frac{\mathrm{29}{x}\:−\:\mathrm{24}{y}}{\mathrm{696}}\:=\:\mathrm{1} \\…
Question Number 9732 by tawakalitu last updated on 29/Dec/16 $$\mathrm{Find}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{an}\:\mathrm{ellipse}\:\mathrm{whose}\:\mathrm{major}\:\mathrm{axis} \\ $$$$\mathrm{is}\:\mathrm{vertical},\:\mathrm{with}\:\mathrm{the}\:\mathrm{center}\:\mathrm{located}\:\left(−\:\mathrm{1},\:\mathrm{3}\right) \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{center}\:\mathrm{and}\:\mathrm{one}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{covertices}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{4},\:\mathrm{and}\:\mathrm{the}\:\mathrm{distance} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{center}\:\mathrm{and}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vertices}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{6}. \\ $$ Answered by sandy_suhendra…
Question Number 9246 by sandipkd@ last updated on 25/Nov/16 Commented by sandipkd@ last updated on 25/Nov/16 $${question}\:{no}.\:\mathrm{4} \\ $$ Commented by sandipkd@ last updated on…
show-that-the-ellipse-with-e-5-3-focus-0-2-and-directrix-x-4-5-3-has-the-equation-x-5-2-9-y-2-2-4-1-
Question Number 9163 by tawakalitu last updated on 21/Nov/16 $$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{ellipse}\:\mathrm{with}\:\mathrm{e}\:=\:\frac{\sqrt{\mathrm{5}}}{\mathrm{3}},\: \\ $$$$\mathrm{focus}\:\left(\mathrm{0},\:\mathrm{2}\right)\:\mathrm{and}\:\mathrm{directrix}\:\mathrm{x}\:=\:−\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{3}} \\ $$$$\mathrm{has}\:\mathrm{the}\:\mathrm{equation}\::\:\frac{\left(\mathrm{x}\:−\:\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{9}}\:+\:\frac{\left(\mathrm{y}\:−\:\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{1} \\ $$ Commented by sandy_suhendra last updated on 22/Nov/16…
Question Number 74698 by ajfour last updated on 29/Nov/19 Commented by ajfour last updated on 29/Nov/19 $${If}\:\overset{\frown} {{AB}}\:=\overset{\frown} {{AE}}\:=\:\overset{\frown} {{DE}}\:. \\ $$$${Find}\:{equation}\:{of}\:{circle}. \\ $$ Answered…
Question Number 74649 by ajfour last updated on 28/Nov/19 Commented by ajfour last updated on 28/Nov/19 $$\:\:{Find}\:\theta_{{max}} \:{in}\:{terms}\:{of}\:{a},{b},{c}. \\ $$$${The}\:{boundary}\:{is}\:{an}\:{ellipse}. \\ $$ Answered by ajfour…
Question Number 9048 by tawakalitu last updated on 16/Nov/16 Answered by Rasheed Soomro last updated on 16/Nov/16 $$\left.\mathrm{a}\right)\:\:\mathrm{Straight}\:\mathrm{line}:\:\mathrm{y}=\mathrm{mx}+\mathrm{c} \\ $$$$\:\:\:\:\:\:\:\mathrm{Circle}:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{2gx}+\mathrm{2fy}+\mathrm{C}_{\mathrm{1}} =\mathrm{0} \\ $$$$\mathrm{For}\:\mathrm{intersection}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{above}…
Question Number 8929 by kuldeep singh raj last updated on 06/Nov/16 Commented by Rasheed Soomro last updated on 06/Nov/16 $$\mathrm{This}\:\mathrm{depends}\:\mathrm{upon}\:\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{C}. \\ $$$$\mathrm{For}\:\mathrm{example}\:\mathrm{how}\:\mathrm{far}\:\mathrm{is}\:\mathrm{C}\:\mathrm{from}\:\mathrm{A}. \\ $$$$\mathrm{So}\:\mathrm{additional}\:\:\mathrm{information}\:\mathrm{is}\:\mathrm{required} \\…
Question Number 139924 by EDWIN88 last updated on 02/May/21 $$\:\:\:\:\:\:\mathrm{Evaluate}\:\int_{\left(\mathrm{0},\mathrm{1}\right)} ^{\left(\mathrm{1},\mathrm{2}\right)} \:\left[\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}\right)\mathrm{dx}\:+\:\left(\mathrm{y}^{\mathrm{2}} +\mathrm{x}\right)\:\mathrm{dy}\:\right]\: \\ $$$$\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{from}\:\left(\mathrm{0},\mathrm{1}\right)\:\mathrm{to}\:\left(\mathrm{1},\mathrm{2}\right). \\ $$ Answered by TheSupreme last updated on 02/May/21…
Question Number 74300 by ~blr237~ last updated on 21/Nov/19 $${Let}\:{consider}\:\:\gamma\:\::{I}\rightarrow\mathbb{R}^{\mathrm{2}} \:\:{a}\:{parametric}\:{curve}\: \\ $$$$\left.\mathrm{1}\left.\right){Prove}\:{that}\:{if}\:\:{a}<{b}\:\:{and}\:\:\gamma\left({a}\right)\neq\gamma\left({b}\right)\:{then}\:{there}\:{exist}\:\:{t}_{\mathrm{0}} \in\right]{a},{b}\left[\:\:\right. \\ $$$${such}\:{as}\:\:\gamma'\left({t}_{\mathrm{0}} \right)\:\:{is}\:{colinear}\:{to}\:\gamma\left({b}\right)−\gamma\left({a}\right)\: \\ $$$$\left.\mathrm{2}\right){Show}\:{that}\:{if}\:\:\gamma\:{is}\:{regular}\:{and}\:{the}\:\:{function}\:{f}\::{I}\rightarrow\mathbb{R}\:\:\:\:{t}\rightarrow{f}\left({t}\right)=\mid\mid\gamma\left({t}\right)−{O}\left(\mathrm{0},\mathrm{0}\right)\:\mid\mid\:\:{is}\:{maximal}\:{in}\:{t}_{\mathrm{0}} \in{I} \\ $$$${Then}\:\:\mid{K}_{\gamma} \left({t}_{\mathrm{0}} \right)\mid\geqslant\frac{\mathrm{1}}{{f}\left({t}_{\mathrm{0}} \right)}…