Menu Close

Category: Coordinate Geometry

Three-circles-each-radius-1-touch-one-another-externally-and-they-lie-between-two-parallel-line-The-minimum-possible-distance-between-the-lines-is-

Question Number 138203 by liberty last updated on 11/Apr/21 $${Three}\:{circles}\:{each}\:{radius}\:\mathrm{1},\:{touch}\:{one} \\ $$$${another}\:{externally}\:{and}\:{they}\:{lie} \\ $$$${between}\:{two}\:{parallel}\:{line}.\:{The}\: \\ $$$${minimum}\:{possible}\:{distance}\:{between}\: \\ $$$${the}\:{lines}\:{is}\:\_\: \\ $$ Answered by bobhans last updated…

Prove-that-the-locus-of-a-point-which-moves-its-distance-from-the-point-b-0-is-p-times-its-distance-from-the-point-b-0-is-p-2-1-x-2-y-2-b-2-2b-p-2-1-x

Question Number 6716 by Tawakalitu. last updated on 15/Jul/16 $${Prove}\:{that}\:{the}\:{locus}\:{of}\:{a}\:{point}\:{which}\:{moves}\:{its}\:{distance}\:{from}\: \\ $$$${the}\:{point}\:\left(−{b},\:\mathrm{0}\right)\:{is}\:{p}\:{times}\:{its}\:{distance}\:{from}\:{the}\:{point}\:\left({b},\:\mathrm{0}\right)\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({p}^{\mathrm{2}} \:−\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \right)\:−\:\mathrm{2}{b}\left({p}^{\mathrm{2}} \:+\:\mathrm{1}\right){x}\:=\:\mathrm{0} \\ $$$${Show}\:{that}\:{this}\:{locus}\:{is}\:{a}\:{circle}\:{and}\:{find}\:{its}\:{radius}. \\ $$ Answered by…

Question-6681

Question Number 6681 by Tawakalitu. last updated on 11/Jul/16 Answered by Rasheed Soomro last updated on 12/Jul/16 $${Join}\:\mathrm{O}\:{and}\:\mathrm{Y}. \\ $$$$\because\:\:\mathrm{OX}=\mathrm{OY}=\mathrm{OZ}\:\:\left[{Radii}\:{of}\:{same}\:{circle}\right] \\ $$$$\therefore\:\bigtriangleup\mathrm{XOY}\:\:{and}\:\:\bigtriangleup\mathrm{ZOY}\:{are}\:{issoscel}\:{triangles}. \\ $$$$\therefore\:\:\angle\mathrm{XYO}=\angle\mathrm{OXY}=\mathrm{30}\:\:\:{and}\:\:\:\:\angle\mathrm{ZYO}=\angle\mathrm{OZY}=\mathrm{20} \\…

Question-137412

Question Number 137412 by oustmuchiya@gmail.com last updated on 02/Apr/21 Answered by herbert last updated on 02/Apr/21 $${gradient}\:{of}\:{l}_{\mathrm{1}} \:=\:\frac{\mathrm{2}+\mathrm{4}}{\mathrm{5}+\mathrm{1}}\:=\frac{\mathrm{6}}{\mathrm{6}}=\mathrm{1} \\ $$$${but}\:{grad}\:{of}\:{l}_{\mathrm{1}} ×{l}_{\mathrm{2}} =−\mathrm{1} \\ $$$${grad}\:{of}\:{l}_{\mathrm{2}} =−\mathrm{1}…

Find-the-equation-of-the-circle-circumscribing-the-triangle-form-by-lines-3x-y-5-0-x-y-1-0-and-2x-y-4-0-

Question Number 6192 by sanusihammed last updated on 17/Jun/16 $${Find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{circumscribing}\:{the}\:{triangle}\:{form}\:{by}\: \\ $$$${lines}\:\:\mathrm{3}{x}\:+\:{y}\:−\:\mathrm{5}\:=\:\mathrm{0},\:{x}\:+\:{y}\:+\:\mathrm{1}\:=\:\mathrm{0},\:{and}\:\mathrm{2}{x}\:+\:{y}\:−\:\mathrm{4}\:=\:\mathrm{0} \\ $$ Answered by Rasheed Soomro last updated on 18/Jun/16 $$\mathrm{3}{x}\:+\:{y}\:−\:\mathrm{5}\:=\:\mathrm{0}……\left({i}\right) \\ $$$${x}\:+\:{y}\:+\:\mathrm{1}\:=\:\mathrm{0}……..\left({ii}\right)…