Menu Close

Category: Coordinate Geometry

Question-6681

Question Number 6681 by Tawakalitu. last updated on 11/Jul/16 Answered by Rasheed Soomro last updated on 12/Jul/16 $${Join}\:\mathrm{O}\:{and}\:\mathrm{Y}. \\ $$$$\because\:\:\mathrm{OX}=\mathrm{OY}=\mathrm{OZ}\:\:\left[{Radii}\:{of}\:{same}\:{circle}\right] \\ $$$$\therefore\:\bigtriangleup\mathrm{XOY}\:\:{and}\:\:\bigtriangleup\mathrm{ZOY}\:{are}\:{issoscel}\:{triangles}. \\ $$$$\therefore\:\:\angle\mathrm{XYO}=\angle\mathrm{OXY}=\mathrm{30}\:\:\:{and}\:\:\:\:\angle\mathrm{ZYO}=\angle\mathrm{OZY}=\mathrm{20} \\…

Question-137412

Question Number 137412 by oustmuchiya@gmail.com last updated on 02/Apr/21 Answered by herbert last updated on 02/Apr/21 $${gradient}\:{of}\:{l}_{\mathrm{1}} \:=\:\frac{\mathrm{2}+\mathrm{4}}{\mathrm{5}+\mathrm{1}}\:=\frac{\mathrm{6}}{\mathrm{6}}=\mathrm{1} \\ $$$${but}\:{grad}\:{of}\:{l}_{\mathrm{1}} ×{l}_{\mathrm{2}} =−\mathrm{1} \\ $$$${grad}\:{of}\:{l}_{\mathrm{2}} =−\mathrm{1}…

Find-the-equation-of-the-circle-circumscribing-the-triangle-form-by-lines-3x-y-5-0-x-y-1-0-and-2x-y-4-0-

Question Number 6192 by sanusihammed last updated on 17/Jun/16 $${Find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{circumscribing}\:{the}\:{triangle}\:{form}\:{by}\: \\ $$$${lines}\:\:\mathrm{3}{x}\:+\:{y}\:−\:\mathrm{5}\:=\:\mathrm{0},\:{x}\:+\:{y}\:+\:\mathrm{1}\:=\:\mathrm{0},\:{and}\:\mathrm{2}{x}\:+\:{y}\:−\:\mathrm{4}\:=\:\mathrm{0} \\ $$ Answered by Rasheed Soomro last updated on 18/Jun/16 $$\mathrm{3}{x}\:+\:{y}\:−\:\mathrm{5}\:=\:\mathrm{0}……\left({i}\right) \\ $$$${x}\:+\:{y}\:+\:\mathrm{1}\:=\:\mathrm{0}……..\left({ii}\right)…

Question-71170

Question Number 71170 by mr W last updated on 12/Oct/19 Commented by mr W last updated on 12/Oct/19 $${Question}\:#\mathrm{49583}\:\left({reposted}\right) \\ $$$${in}\:{a}\:{paraboloid}\:{cup},\:{which}\:{is}\:{absolutely} \\ $$$${smooth},\:{a}\:{stick}\:{remains}\:{in}\:{equilibrium} \\ $$$${as}\:{shown}.\:{find}\:{the}\:{maximum}\:{length}…