Menu Close

Category: Coordinate Geometry

Question-71170

Question Number 71170 by mr W last updated on 12/Oct/19 Commented by mr W last updated on 12/Oct/19 $${Question}\:#\mathrm{49583}\:\left({reposted}\right) \\ $$$${in}\:{a}\:{paraboloid}\:{cup},\:{which}\:{is}\:{absolutely} \\ $$$${smooth},\:{a}\:{stick}\:{remains}\:{in}\:{equilibrium} \\ $$$${as}\:{shown}.\:{find}\:{the}\:{maximum}\:{length}…

the-sides-of-a-triangle-are-5-7-10-cm-1-find-the-largest-equilateral-triangle-which-circumscribes-the-given-triangle-2-find-the-smallest-equilateral-triangle-which-inscribes-the-given-triangle-

Question Number 136293 by mr W last updated on 20/Mar/21 $${the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:\mathrm{5},\mathrm{7},\mathrm{10}\:{cm}. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{largest}\:{equilateral}\:{triangle} \\ $$$${which}\:{circumscribes}\:{the}\:{given}\:{triangle}. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{smallest}\:{equilateral}\:{triangle} \\ $$$${which}\:{inscribes}\:{the}\:{given}\:{triangle}. \\ $$ Commented by mr W…

Find-the-equation-of-ellipse-with-F-1-1-2-F-2-3-4-and-2a-2-3-

Question Number 136165 by bramlexs22 last updated on 19/Mar/21 $${Find}\:{the}\:{equation}\:{of}\:{ellipse}\:{with} \\ $$$${F}_{\mathrm{1}} \left(\mathrm{1},\mathrm{2}\right)\:,\:{F}_{\mathrm{2}} \left(\mathrm{3},\mathrm{4}\right)\:{and}\:\mathrm{2}{a}\:=\:\mathrm{2}\sqrt{\mathrm{3}} \\ $$ Commented by bramlexs22 last updated on 19/Mar/21 $${Dear}\:{Mr}\:{W}\:{can}\:{you}\:{help}\:{me} \\…

find-the-volume-of-the-solid-on-the-closed-region-0-x-1-and-0-y-1-under-the-surface-Z-5-x-2y-

Question Number 135931 by Engr_Jidda last updated on 17/Mar/21 $${find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{on}\:{the}\:{closed} \\ $$$${region}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\:{under}\:{the} \\ $$$${surface}\:{Z}=\mathrm{5}−{x}−\mathrm{2}{y} \\ $$ Answered by dhgt last updated on 04/May/21 Terms of…

For-0-x-y-z-1-solve-the-equation-x-1-y-zx-y-1-z-xy-z-1-x-yz-3-x-y-z-

Question Number 4752 by Yozzii last updated on 04/Mar/16 $${For}\:\mathrm{0}\leqslant{x},{y},{z}\leqslant\mathrm{1}\:{solve}\:{the}\:{equation} \\ $$$$\frac{{x}}{\mathrm{1}+{y}+{zx}}+\frac{{y}}{\mathrm{1}+{z}+{xy}}+\frac{{z}}{\mathrm{1}+{x}+{yz}}=\frac{\mathrm{3}}{{x}+{y}+{z}}. \\ $$ Commented by prakash jain last updated on 05/Mar/16 $$\mathrm{trivial}\:\mathrm{solution}\:\mathrm{is}\:{x}={y}={z}=\mathrm{1} \\ $$$$\mathrm{Other}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{be}\:\mathrm{worked}.…

Question-135800

Question Number 135800 by benjo_mathlover last updated on 16/Mar/21 Answered by Olaf last updated on 16/Mar/21 $$\mathrm{A}\begin{pmatrix}{−\mathrm{1}}\\{−\mathrm{1}}\\{−\mathrm{1}}\end{pmatrix}\:\mathrm{B}\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}\:\mathrm{C}\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{1}}\\{−\mathrm{1}}\end{pmatrix}\:\mathrm{D}\begin{pmatrix}{−\mathrm{1}}\\{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{AB}\:\mathrm{and}\:\mathrm{CD}\:\mathrm{are}\:\mathrm{two}\:\mathrm{diagonals} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{cube} \\ $$$$\overset{\rightarrow} {\mathrm{AB}}\:=\:\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\:\overset{\rightarrow} {\mathrm{CD}}\:=\:\begin{pmatrix}{−\mathrm{2}}\\{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}…