Question Number 214813 by ajfour last updated on 20/Dec/24 $${Help}\:{me}\:{solve}\:{this} \\ $$$$\frac{{dy}}{{dx}}+\frac{{a}}{{y}}+{b}\sqrt{{x}}=\mathrm{0} \\ $$ Commented by ajfour last updated on 20/Dec/24 https://youtu.be/H53vv0XMRs4?si=eeFguqQqwBJDXTTU Answered by TonyCWX08…
Question Number 213371 by otchoumou last updated on 03/Nov/24 Commented by otchoumou last updated on 03/Nov/24 $${aider} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 213097 by issac last updated on 30/Oct/24 $$\mathrm{Uhhhh}. \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{solve}\:\mathrm{Partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=\mathrm{0} \\ $$$$\mathrm{Cylinderical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\frac{\mathrm{1}}{\rho}\centerdot\frac{\partial\:\:}{\partial\rho}\left(\rho\frac{\partial\:\:}{\partial\rho}\right)+\left(\frac{\mathrm{1}}{\rho}\right)^{\mathrm{2}} \frac{\partial^{\mathrm{2}} \:}{\partial\phi^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} \:\:}{\partial{z}^{\mathrm{2}} }…
Question Number 212895 by papuchin last updated on 26/Oct/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212461 by MrGaster last updated on 14/Oct/24 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{prove}: \\ $$$$\:\:\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\:\sqrt{{x}^{\mathrm{4}} +\mathrm{25}{x}^{\mathrm{2}} +\mathrm{160}}}=\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\:\sqrt{{x}^{\mathrm{4}} −\mathrm{95}{x}^{\mathrm{2}} +\mathrm{2560}}} \\ $$ Commented by Ghisom…
Question Number 212435 by Ar Brandon last updated on 13/Oct/24 Answered by mr W last updated on 13/Oct/24 $${y}'=−\frac{\mathrm{2}{y}^{\mathrm{2}} +{xy}}{{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} } \\ $$$${let}\:{y}={px} \\…
Question Number 212358 by MrGaster last updated on 11/Oct/24 $$ \\ $$$$\:\:\:\:\:\int\int\int_{\mathbb{R}^{\mathrm{3}} } \frac{{e}^{−\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} }{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)}{dx}\:{dy}\:{dz} \\ $$ Terms of…
Question Number 212141 by MrGaster last updated on 03/Oct/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\int\frac{\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{dx}. \\ $$$$ \\ $$ Answered by BHOOPENDRA last updated on 03/Oct/24 $$\int\frac{\mathrm{cos}\:^{\mathrm{2}}…
Question Number 212107 by MrGaster last updated on 01/Oct/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}=\int_{\mathrm{0}} ^{\infty} \frac{{x}\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} }{dx}. \\ $$$$ \\ $$ Answered by Frix last updated on…
Question Number 211800 by MrGaster last updated on 21/Sep/24 $$ \\ $$$$\boldsymbol{{set}}\:\boldsymbol{\Omega}=\left\{\left(\boldsymbol{{x}},\boldsymbol{{y}},\boldsymbol{{z}}\right)\mid\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} \leq\mathrm{1}\right\}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{certificat}}\mathrm{e}: \\ $$$$\:\:\frac{\mathrm{4}\boldsymbol{\pi}}{\mathrm{3}}\sqrt[{\mathrm{3}}]{\mathrm{2}}\leq\int\underset{\boldsymbol{\Omega}} {\int}\int\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}+\mathrm{2}\boldsymbol{{y}}−\mathrm{2}\boldsymbol{{z}}+\mathrm{5}}\boldsymbol{{dv}}\leq\frac{\mathrm{8}\boldsymbol{\pi}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\…