Menu Close

Category: Differential Equation

2-0-x-y-3-cos-xdx-yd-2-y-dx-2-dy-dx-2-ky-5-sin-x-y-0-a-y-0-0-solve-the-differential-equation-Laplace-tranforms-might-be-helpful-i-think-

Question Number 61635 by ajfour last updated on 05/Jun/19 $$\mathrm{2}\left(\int_{\mathrm{0}} ^{\:{x}} {y}^{\mathrm{3}} \mathrm{cos}\:{xdx}\right)\left[\frac{{yd}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{ky}^{\mathrm{5}} \mathrm{sin}\:{x}\:\:\:\:\:;\:\: \\ $$$$\:\:{y}\left(\mathrm{0}\right)={a},\:{y}'\left(\mathrm{0}\right)=\mathrm{0}\:. \\ $$$$\:{solve}\:{the}\:{differential}\:{equation}. \\ $$$$\left({Laplace}\:{tranforms}\:{might}\right.…

D-2-1-y-x-sin-x-

Question Number 127064 by benjo_mathlover last updated on 26/Dec/20 $$\:\:\:\left({D}^{\mathrm{2}} −\mathrm{1}\right){y}\:=\:{x}\:\mathrm{sin}\:{x}\: \\ $$ Answered by liberty last updated on 26/Dec/20 $$\:{The}\:{characteristic}\:{eq}\:{of}\:\left({D}^{\mathrm{2}} −\mathrm{1}\right){y}\:=\:\mathrm{0} \\ $$$${is}\:\lambda^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\:,\:{has}\:{the}\:{roots}\:\lambda=\pm\mathrm{1}…

Question-192345

Question Number 192345 by Mingma last updated on 15/May/23 Answered by aleks041103 last updated on 15/May/23 $$\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({f}\left(\mathrm{1}+{x}\right)+{f}\left(\mathrm{1}−{x}\right)\right){dx}= \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left(\mathrm{1}+{x}\right){dx}\:−\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {f}\left(\mathrm{1}−{x}\right){d}\left(−{x}\right)=…

d-2-y-dx-3-dy-dx-2y-e-4t-y-0-1-y-0-0-solve-with-Laplace-Transform-

Question Number 126620 by fajri last updated on 22/Dec/20 $$\frac{{d}^{\mathrm{2}} {y}}{{dx}}\:−\:\mathrm{3}\:\frac{{dy}}{{dx}}\:+\:\mathrm{2}{y}\:=\:{e}^{\mathrm{4}{t}} \:,\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{1},\:{y}'\left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$$${solve}\:{with}\:{Laplace}\:{Transform}! \\ $$ Answered by Olaf last updated on 22/Dec/20 $$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}}…