Menu Close

Category: Differential Equation

Solve-in-the-order-of-finding-the-integrsting-stroke-1-ydx-x-3-y-x-xdy-0-2-xy-2-y-dx-xdy-0-

Question Number 124763 by Mammadli last updated on 05/Dec/20 $$\boldsymbol{{Solve}}\:\boldsymbol{{in}}\:\boldsymbol{{the}}\:\boldsymbol{{order}}\:\boldsymbol{{of}}\:\boldsymbol{{finding}}\:\boldsymbol{{the}}\:\boldsymbol{{integrsting}}\:\boldsymbol{{stroke}}: \\ $$$$\mathrm{1}.\:\boldsymbol{{ydx}}−\left(\boldsymbol{{x}}^{\mathrm{3}} \boldsymbol{{y}}+\boldsymbol{{x}}\right)−\boldsymbol{{xdy}}=\mathrm{0} \\ $$$$\mathrm{2}.\:\left(\boldsymbol{{xy}}^{\mathrm{2}} +\boldsymbol{{y}}\right)\boldsymbol{{dx}}−\boldsymbol{{xdy}}=\mathrm{0} \\ $$ Commented by Mammadli last updated on 05/Dec/20…

solve-the-differential-equation-d-2-dt-2-x-2-x-t-0-x-0-0-x-2-0-o-

Question Number 190259 by jlewis last updated on 30/Mar/23 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\: \\ $$$$\mathrm{equation}. \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dt}^{\mathrm{2}} }\:\mathrm{x}\:+\:\omega^{\mathrm{2}} \mathrm{x}\left(\mathrm{t}\right)\:=\mathrm{0} \\ $$$$;\mathrm{x}\left(\mathrm{0}\right)=\mathrm{0};\mathrm{x}^{\mathrm{2}} \left(\mathrm{0}\right)=\upsilon_{\mathrm{o}} \\ $$ Commented by mr…

Solve-the-ODE-x-d-2-y-dx-2-dy-dx-ln-dy-dx-dy-dx-ln-x-

Question Number 124643 by Lordose last updated on 05/Dec/20 $$\:\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{ODE} \\ $$$$\:\:\:\:\mathrm{x}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{dy}}{\mathrm{dx}}\mathrm{ln}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\:−\:\frac{\mathrm{dy}}{\mathrm{dx}}\mathrm{ln}\left(\mathrm{x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Solve-the-equation-2-z-x-y-x-2-y-1-particular-solution-which-z-x-0-x-2-and-z-1-y-cos-y-

Question Number 124634 by bemath last updated on 05/Dec/20 $$\:{Solve}\:{the}\:{equation}\:\frac{\partial^{\mathrm{2}} {z}}{\partial{x}\partial{y}}\:=\:{x}^{\mathrm{2}} {y} \\ $$$$\left(\mathrm{1}\right)\:{particular}\:{solution}\:{which}\: \\ $$$$\:{z}\left({x},\mathrm{0}\right)\:=\:{x}^{\mathrm{2}} \:{and}\:{z}\left(\mathrm{1},{y}\right)=\mathrm{cos}\:{y} \\ $$$$ \\ $$ Answered by liberty last…