Question Number 59361 by Andrew Foxman last updated on 08/May/19 $${Pls}\:{help} \\ $$$${r}^{\mathrm{2}} {r}''={C}\:{where}\:{r}\left({t}\right)\:{is}\:{a}\:{function}\:{and} \\ $$$${C}\:{is}\:{a}\:{constant} \\ $$ Commented by kaivan.ahmadi last updated on 09/May/19…
Question Number 124763 by Mammadli last updated on 05/Dec/20 $$\boldsymbol{{Solve}}\:\boldsymbol{{in}}\:\boldsymbol{{the}}\:\boldsymbol{{order}}\:\boldsymbol{{of}}\:\boldsymbol{{finding}}\:\boldsymbol{{the}}\:\boldsymbol{{integrsting}}\:\boldsymbol{{stroke}}: \\ $$$$\mathrm{1}.\:\boldsymbol{{ydx}}−\left(\boldsymbol{{x}}^{\mathrm{3}} \boldsymbol{{y}}+\boldsymbol{{x}}\right)−\boldsymbol{{xdy}}=\mathrm{0} \\ $$$$\mathrm{2}.\:\left(\boldsymbol{{xy}}^{\mathrm{2}} +\boldsymbol{{y}}\right)\boldsymbol{{dx}}−\boldsymbol{{xdy}}=\mathrm{0} \\ $$ Commented by Mammadli last updated on 05/Dec/20…
Question Number 190257 by jlewis last updated on 30/Mar/23 $$ \\ $$ Commented by jlewis last updated on 30/Mar/23 Commented by mahdipoor last updated on…
Question Number 190259 by jlewis last updated on 30/Mar/23 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\: \\ $$$$\mathrm{equation}. \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dt}^{\mathrm{2}} }\:\mathrm{x}\:+\:\omega^{\mathrm{2}} \mathrm{x}\left(\mathrm{t}\right)\:=\mathrm{0} \\ $$$$;\mathrm{x}\left(\mathrm{0}\right)=\mathrm{0};\mathrm{x}^{\mathrm{2}} \left(\mathrm{0}\right)=\upsilon_{\mathrm{o}} \\ $$ Commented by mr…
Question Number 124701 by Ali85 last updated on 05/Dec/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124643 by Lordose last updated on 05/Dec/20 $$\:\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{ODE} \\ $$$$\:\:\:\:\mathrm{x}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{dy}}{\mathrm{dx}}\mathrm{ln}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\:−\:\frac{\mathrm{dy}}{\mathrm{dx}}\mathrm{ln}\left(\mathrm{x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124634 by bemath last updated on 05/Dec/20 $$\:{Solve}\:{the}\:{equation}\:\frac{\partial^{\mathrm{2}} {z}}{\partial{x}\partial{y}}\:=\:{x}^{\mathrm{2}} {y} \\ $$$$\left(\mathrm{1}\right)\:{particular}\:{solution}\:{which}\: \\ $$$$\:{z}\left({x},\mathrm{0}\right)\:=\:{x}^{\mathrm{2}} \:{and}\:{z}\left(\mathrm{1},{y}\right)=\mathrm{cos}\:{y} \\ $$$$ \\ $$ Answered by liberty last…
Question Number 124619 by arkanmath7@gmail.com last updated on 04/Dec/20 $${find}\:{the}\:{inverse}\:{of}\:{y}={x}^{\mathrm{4}} −\mathrm{2}\boldsymbol{{x}}+\mathrm{1} \\ $$ Commented by MJS_new last updated on 04/Dec/20 $${x}^{\mathrm{4}} −\mathrm{2}{x}−\left({y}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=? \\…
Question Number 59037 by Rdk96 last updated on 03/May/19 $${solve}\:\:\frac{{dy}}{{dt}}={t}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$ Commented by tanmay last updated on 04/May/19 $${unique}\:{problem}\:…{still}\:{trying}\:{to}\:{find}\:{the}\:{way} \\ $$$${to}\:{proceed}\:{further}… \\ $$…
Question Number 124389 by Engr_Jidda last updated on 03/Dec/20 Answered by Dwaipayan Shikari last updated on 03/Dec/20 $$\int_{\mathrm{0}} ^{\infty} {x}^{{m}} {e}^{−{ax}^{{n}} } {dx}\:\:\:\:\:\:\:{ax}^{{n}} ={u}\Rightarrow{anx}^{{n}−\mathrm{1}} =\frac{{du}}{{dx}}…